Skip to main content
Log in

Optimal taxation in non-life insurance markets

  • Original Article
  • Published:
The Geneva Risk and Insurance Review Aims and scope Submit manuscript

Abstract

Insurance markets all over the world are subject to taxes, which can be collected through various tax schemes. The most commonly used tax schemes in non-life insurance include taxes on the premium income as well as taxes on corporate profits. The mix of those taxes differs substantially across regions. In Europe, for instance, premium taxes are at much higher levels than those in the United States. This paper shows that the particular mix of taxes matters for insurance companies’ solvency levels and insurance premiums, even when the expected tax revenue is fixed. The analysis provides comparative statics that reveal which combination of premium taxation and corporate taxation maximizes welfare. Numerical examples suggest that relatively high premium tax rates are welfare optimal. In general, a low volatility of insurance claims, a strong reaction of insurance demand to insurer default risk, as well as substantial agency issues between shareholders and management make corporate taxation more favorable in comparison to premium taxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Cf. Merton (1995, pp. 32–34) and Froot (2007, p. 274).

  2. Cf. Cummins and Danzon (1997), Zanjani (2002), Froot (2007) and Schlütter (2014).

  3. Cf. Delipalla and Keen (2006, p. 548).

  4. This facilitates notations in comparison to applying a tax rate \(\tilde{\tau }_p\) to the net premium (i.e., before taxation), as it typically occurs in reality. In reality, the tax due would be calculated as \(\frac{\tilde{\tau }_p \cdot p}{1+\tilde{\tau }_p}\). However, the tax rate can be easily transformed by \(\tau _p = \frac{\tilde{\tau }_p}{1+\tilde{\tau }_p}\).

  5. This assumption is consistent with Zanjani (2002, p. 286) and it helps to simplify the notations later on (in particular with respect to Eq. (6), which is the central starting point for the subsequent analyses). A risky asset allocation is particularly relevant for life insurance companies. Section 5 discusses how an analysis of taxation in life insurance would differ.

  6. Cf. Cummins and Danzon (1997, p. 13 f.).

  7. For simplicity, we assume that personal taxation of shareholders’ returns on their equity investment can be omitted, because those returns are taxed at the same rate as their returns from potential alternative investments. Hence, only corporate income taxation is relevant for the present value of shareholders’ equity returns. The focus on corporate income taxation is consistent with Doherty and Garven (1986), Zanjani (2002) and Gatzert and Schmeiser (2008).

  8. This is consistent with Zanjani (2002, p. 287), who denotes the objective function as the “expected discounted profit.”

  9. Cf. Zanjani (2002, p. 294), who provides a decomposition of the cost of capital into taxes and other frictional costs on the one hand, and the investors’ opportunity costs on the other hand. He argues that frictional costs of capital might be of more relevance than the opportunity costs of capital.

  10. Equivalently to using the default ratio dr as a decision variable, we could use the asset–liability ratio s or the initial equity capital K instead. Using dr is most straightforward, since it is the measure for product quality in our context. We can thereby keep our analysis close to that of Kay and Keen (1991), who study the effects of two types of taxes for price and product quality.

  11. This procedure is in line with “fair” insurance pricing, cf., e.g., Gatzert and Schmeiser (2008, p. 51 f.).

  12. Consumer surplus is frequently employed in welfare analyses. In the context of indirect taxation, cf., e.g., Skeath and Trandel (1994). In the context of insurance and default risk, it has been used by Delipalla and Keen (2012, p. 99) and Stoyanova and Schlütter (2015).

  13. The simplification in the last step is possible because many terms on both sides do not depend on \(\tau _i\) or \(\tau _j\) and therefore drop from the comparison.

  14. Cf. Appendix 1.

  15. Cf. Kay and Keen (1983), Kay and Keen (1991) and Delipalla and Keen (2006)

  16. Cf. Appendix 1.

  17. According to Yow and Sherris (2008, p. 301), the volatilities for non-life insurance lines-of-business range between 11.07% and \(23.18\%\).

  18. The price sensitivity parameter, \(f_p=0.49\%\), is set with regard to the resulting price elasticity of demand. The calibration of the base scenario implies \(p=223.03\), and the price elasticity of demand is \(\epsilon =-y_p / \frac{y}{p}=p \cdot f_p = 1.093\), which is similar to the estimation by Barone and Bella (2004, p. 29). The parameter for default sensitivity is chosen such that the default probability in equilibrium is at \(0.5\%\), i.e., that the insurer is incentivized to ensure a solvency level in line with the Solvency II requirement.

  19. In this context, the model framework could start from the one used by Fischer and Schlütter (2015), who analyze regulatory impacts on the chosen asset allocation and capital level.

  20. A starting point to adjust the payoffs and their valuation to a life insurance context can be found in Briys and de Varenne (1994).

  21. A practical tool leading to a lower tax rate on the investment income is to exempt some securities from taxation; cf. Doherty and Garven (1986, p. 1033 f.).

References

  • Barone, G., and M. Bella. 2004. Price-elasticity based customer segmentation in the Italian auto insurance market. Journal of Targeting, Measurement and Analysis for Marketing 13: 21–31.

    Article  Google Scholar 

  • Bebu, I., and T. Mathew. 2009. Confidence intervals for limited moments and truncated moments in normal and lognormal models. Statistics and Probability Letters 79: 375–380.

    Article  Google Scholar 

  • Braun, A., H. Schmeiser, and P. Rymaszewski. 2015. Stock vs. mutual insurers: Who should and who does charge more? European Journal of Operational Research 242: 875–889.

    Article  Google Scholar 

  • Briys, E., and F. de Varenne. 1994. Life insurance in a contingent claim framework: Pricing and regulatory implications. The Geneva Papers on Risk and Insurance Theory 19: 53–72.

    Article  Google Scholar 

  • Butsic, R.P. 1994. Solvency measurement for property-liability risk-based capital applications. Journal of Risk and Insurance 61: 656–690.

    Article  Google Scholar 

  • Chen, H.C., and J.R. Ritter. 2000. The seven percent solution. Journal of Finance 55: 1105–1131.

    Article  Google Scholar 

  • Cummins, J.D., and P.M. Danzon. 1997. Price, financial quality, and capital flows in insurance markets. Journal of Financial Intermediation 6: 3–38.

    Article  Google Scholar 

  • Delipalla, S., and M. Keen. 1992. The comparison between ad valorem and specific taxation under imperfect competition. Journal of Public Economics 49: 351–367.

    Article  Google Scholar 

  • Delipalla, S., and M. Keen. 2006. Product quality and the optimal structure of commodity taxes. Journal of Public Economic Theory 8: 547–554.

    Article  Google Scholar 

  • Doherty, N.A., and J.R. Garven. 1986. Price regulation in property-liability insurance: A contingent claims approach. Journal of Finance 41: 1031–1050.

    Article  Google Scholar 

  • Fischer, K., and S. Schlütter. 2015. Optimal investment strategies for insurance companies when capital requirements are imposed by a standard formula. The Geneva Risk and Insurance Review 40: 15–40.

    Article  Google Scholar 

  • Froot, K., and J. Stein. 1998. A new approach to capital budgeting for financial institutions. Journal of Applied Corporate Finance 11 (2): 59–69.

    Article  Google Scholar 

  • Froot, K.A. 2007. Risk management, capital budgeting, and capital structure policy for insurers and reinsurers. Journal of Risk and Insurance 74: 59–69.

    Article  Google Scholar 

  • Gatzert, N., and H. Schmeiser. 2008. The influence of corporate taxes on pricing and capital structure in property-liability insurance. Insurance: Mathematics and Economics 42: 50–58.

    Google Scholar 

  • Hardelin, J., and S.L. de Forges. 2012. Raising capital in an insurance oligopoly market. The Geneva Risk and Insurance Review 37: 83–108.

    Article  Google Scholar 

  • Harrington, S.E., and G.R. Niehaus. 2003. Capital, corporate income taxes, and catastrophe insurance. Journal of Financial Intermediation 12: 365–389.

    Article  Google Scholar 

  • Insurance Europe. 2016. Indirect taxation on insurance contracts in Europe. https://www.insuranceeurope.eu/sites/default/files/attachments/Indirect%20Taxation%202016.pdf.

  • Kay, J., and M. Keen. 1983. How should commodities be taxed? Market structure, product heterogeneity and the optimal structure of commodity taxes. European Economic Review 23: 339–358.

    Article  Google Scholar 

  • Kay, J., and M. Keen. 1991. Product quality under specific and ad valorem taxation. Public Finance Review 19: 238–247.

    Article  Google Scholar 

  • KPMG. 2018. Corporate tax rates table. https://home.kpmg.com/xx/en/home/services/tax/tax-tools-and-resources/tax-rates-online/corporate-tax-rates-table.html.

  • Merton, R. 1995. A functional perspective on financial intermediation. Financial Management 24: 23–41.

    Article  Google Scholar 

  • Modigliani, F., and M. Miller. 1958. The cost of capital, corporation finance and the theory of investment. American Economic Review 48: 261–297.

    Google Scholar 

  • Modigliani, F., and M. Miller. 1963. Corporate income taxes and the cost of capital: A correction. American Economic Review 53: 433–443.

    Google Scholar 

  • Myers, S.C., and J.A. Read. 2001. Capital allocation for insurance companies. Journal of Risk and Insurance 68: 545–580.

    Article  Google Scholar 

  • NAIC. 2017. Retaliation: A guide to state retaliatory taxes, fees, deposits and other requirements, Volume I. http://www.naic.org/documents/prod_serv_legal_ret_zu.pdf.

  • Schlütter, S. 2014. Capital requirements or pricing constraints? An economic analysis of measures for insurance regulation. Journal of Risk Finance 15: 533–554.

    Article  Google Scholar 

  • Skeath, S.E., and G.A. Trandel. 1994. A pareto comparison of ad valorem and unit taxes in noncompetitive environments. Journal of Public Economics 53: 53–71.

    Article  Google Scholar 

  • Stoyanova, R., and S. Schlütter. 2015. Safety versus affordability as targets of insurance regulation: A welfare approach. Journal of Insurance Regulation 34: 1–29.

    Google Scholar 

  • Wakker, P., R. Thaler, and A. Tversky. 1997. Probabilistic insurance. Journal of Risk and Uncertainty 15: 7–28.

    Article  Google Scholar 

  • Yow, S., and M. Sherris. 2008. Enterprise risk management, insurer value maximization, and market frictions. Astin Bulletin 38: 293–339.

    Article  Google Scholar 

  • Zanjani, G. 2002. Pricing and capital allocation in catastrophe insurance. Journal of Financial Economics 65: 283–305.

    Article  Google Scholar 

  • Zimmer, A., H. Gründl, C. Schade, and F. Glenzer. 2018. An incentive-compatible experiment on probabilistic insurance and implications for an insurer’s solvency level. Journal of Risk and Insurance 85: 245–273.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Schlütter.

Appendices

Appendix 1: Derivation of Eq. (6)

The equity capital endowment that corresponds to the asset–liability ratio s needs to fulfill

$$\begin{aligned}&s\overset{\text{Eq. 1}}{=}\frac{(1-\tau _p) \cdot y \cdot p + (1- \delta ) \cdot K}{y \cdot \mu } \nonumber \\\Rightarrow & {} \, K = y \cdot \frac{ s \cdot \mu - (1-\tau _p) \cdot p }{1-\delta } \end{aligned}$$
(34)

Due to \(\max \{A_1 - L_1;0\} = A_1-L_1 + \max \{L_1 - A_1;0\}\) we have

$$\begin{aligned} \text{SHV} = \, & {} e^{-r} \cdot {\mathbb{E}} [\max \{A_1 - L_1;0\} - \tau _c \cdot \bigl (\max \{A_1 - L_1;0\}-K\bigr )] -K\\ = \, & {} A_0-y \cdot \mu \cdot (1-dr) - \tau _c \cdot \bigl ( A_0-y \cdot \mu \cdot (1-dr) - e^{-r} \cdot K \bigr ) -K \end{aligned}$$

The rest follows by inserting Eqs. 1 and 34 and simplifying.

Appendix 2: Derivation of Eq. (9)

The derivation is in line with Kay and Keen (1991, p. 240). Let \(\tilde{p}(y,dr)\) denote the inverse of the demand function y(drp) with respect to p. Then the first condition is formalized as

$$\begin{aligned} \frac{\partial \text{SHV}}{\partial dr}\overset{\text{Eq. 6}}{=}y \cdot \biggl ( \tilde{p}_{dr} + \mu - \frac{\partial t_0}{\partial dr} - \frac{\partial t_0}{\partial p} \cdot \tilde{p}_{dr} \biggr ) = 0, \end{aligned}$$
(35)

where \(-\tilde{p}_{dr}\) can be interpreted as consumers’ willingness-to-pay for a marginal decrease in dr, such that demand stays constant. According to the implicit function theorem, \(-\tilde{p}_{dr}=y_{dr}/y_p=:S\). Equation (9) follows from solving Eq. (35) for \(-\tilde{p}_{dr}\).

Appendix 3: Derivation of Ineq. (16)

To collect a constant tax revenue, a marginal adjustment of \(\tau _i\) must be compensated by an adjustment of \(\tau _j\) such that

$$\begin{aligned}&\frac{\text{d} }{\text{d} \tau _i} \bigl ( y \cdot t_0^{tax} \bigr ) + \frac{\text{d} }{\text{d} \tau _j} \bigl ( y \cdot t_0^{tax} \bigr ) \cdot \frac{\text{d}\tau _j}{\text{d}\tau _i}=0,\nonumber \\ \Leftrightarrow \frac{\text{d}\tau _j}{\text{d}\tau _i}= & {} - \frac{\frac{\text{d} }{\text{d}\tau _i} \bigl ( y \cdot t_0^{tax} \bigr ) }{ \frac{\text{d} }{\text{d} \tau _j} \bigl ( y \cdot t_0^{tax} \bigr )}= - \frac{ \bigl ( y_p \frac{\text{d} p}{\text{d}\tau _i} + y_{dr} \frac{\text{d} dr}{\text{d}\tau _i} \bigr ) \cdot t_0^{tax} + y \cdot \frac{\text{d} t_0^{tax}}{\text{d}\tau _i}}{ \bigl ( y_p \frac{\text{d} p}{\text{d}\tau _j} + y_{dr} \frac{\text{d} dr}{\text{d}\tau _j} \bigr ) \cdot t_0^{tax}+ y \cdot \frac{\text{d} t_0^{tax}}{\text{d}\tau _j}} \end{aligned}$$
(36)

Equation (36) is well-defined if the denominator of the right-hand side is positive. This is ensured by assuming that \(\tau _i\) and \(\tau _j\) are in the increasing part of the Laffer curve, i.e., \(\frac{\text{d} T_0^{tax}}{\text{d} \tau }=\bigl ( y_p \frac{\text{d} p}{\text{d}\tau } + y_{dr} \frac{\text{d} dr}{\text{d}\tau } \bigr ) \cdot t_0^{tax} + y \cdot \frac{\text{d} t_0^{tax}}{\text{d}\tau }>0\), for \(\tau =\tau _i, \tau _j\). A compensated increase in \(\tau _i\) enhances consumer surplus if

$$\begin{aligned}&\frac{\text{d}CS}{\text{d}\tau _i} + \frac{\text{d}CS}{\text{d}\tau _j}\cdot \frac{\text{d}\tau _j}{\text{d}\tau _i}=CS_p \cdot \frac{\text{d}p}{\text{d}\tau _i} + CS_{dr} \cdot \frac{\text{d} dr}{\text{d}\tau _i} + \bigl ( CS_p \cdot \frac{\text{d}p}{\text{d}\tau _j} + CS_{dr} \cdot \frac{\text{d} dr}{\text{d}\tau _j} \bigr ) \cdot \frac{\text{d}\tau _j}{\text{d}\tau _i} >0 \end{aligned}$$

The rest follows from Eq. (36) together with \(CS_p=-y\) (cf. Eq. 14).

Appendix 4: Calculation of term 2 in line 20

Suppose that \(y(dr,p)=a(p+ b(dr))\). For this demand function, we have \(y_p = a'(p+ b(dr))\) and \(y_{dr} = b'(dr)\cdot a'(p+ b(dr))\). Therefore, we have

$$\begin{aligned} CS_{dr}+\frac{y_{dr}}{y_p}\cdot y(dr,p) =\, & {} \frac{\partial }{\partial dr} \int _p^\infty y(dr,\tilde{p})\text{d} \tilde{p} + b'(dr) \cdot y(dr,p)\\ = \, & {} b'(dr)\cdot \underbrace{\int _p^\infty a'(\tilde{p} + \, b(dr)) \text{d}\tilde{p}}_{=y(dr,p)} + \, b'(dr) \cdot y(dr,p)= 0 \end{aligned}$$

Appendix 5: Optimality condition for consumer surplus analysis with endogenous default ratio

Inserting Term 1 from Eq. (20) into Eq. (16) implies

$$\begin{aligned}&-y \frac{ \frac{\text{d}p}{\text{d}\tau _i} + \frac{y_{dr}}{y_p} \cdot \frac{\text{d} dr}{\text{d}\tau _i}}{\bigl ( y_p \frac{\text{d} p}{\text{d}\tau _i} + y_{dr} \frac{\text{d} dr}{\text{d}\tau _i} \bigr ) \cdot t_0^{tax} + y \cdot \frac{\text{d} t_0^{tax}}{\text{d}\tau _i} }> -y \frac{ \frac{\text{d}p}{\text{d}\tau _j} + \frac{y_{dr}}{y_p} \cdot \frac{\text{d} dr}{\text{d}\tau _j}}{\bigl ( y_p \frac{\text{d} p}{\text{d}\tau _j} + y_{dr} \frac{\text{d} dr}{\text{d}\tau _j} \bigr ) \cdot t_0^{tax} + y \cdot \frac{\text{d} t_0^{tax}}{\text{d}\tau _j} } \nonumber \\\Leftrightarrow & {} \frac{\bigl ( y_p \frac{\text{d} p}{\text{d}\tau _i} + y_{dr} \frac{\text{d} dr}{\text{d}\tau _i} \bigr ) \cdot t_0^{tax} + y \cdot \frac{\text{d} t_0^{tax}}{\text{d}\tau _i} }{ \frac{\text{d}p}{\text{d}\tau _i} + \frac{y_{dr}}{y_p} \cdot \frac{\text{d} dr}{\text{d}\tau _i}} > \frac{\bigl ( y_p \frac{\text{d} p}{\text{d}\tau _j} + y_{dr} \frac{\text{d} dr}{\text{d}\tau _j} \bigr ) \cdot t_0^{tax} + y \cdot \frac{\text{d} t_0^{tax}}{\text{d}\tau _j} }{ \frac{\text{d}p}{\text{d}\tau _j} + \frac{y_{dr}}{y_p} \cdot \frac{\text{d} dr}{\text{d}\tau _j}} \end{aligned}$$
(37)

Using \(S=\frac{y_{dr}}{y_p}\) allows for rewriting the LHS (and the RHS accordingly) of the last line as

$$\begin{aligned}&\frac{\bigl ( y_p \frac{\text{d} p}{\text{d}\tau _i} + y_{dr} \frac{\text{d} dr}{\text{d}\tau _i} \bigr ) \cdot t_0^{tax} + y \cdot \frac{\text{d} t_0^{tax}}{\text{d}\tau _i} }{ \frac{\text{d}p}{\text{d}\tau _i} + S \cdot \frac{\text{d} dr}{\text{d}\tau _i}} \nonumber \\= \, & {} \frac{ y_p \cdot \bigl ( \frac{\text{d} p}{\text{d}\tau _i} + S \cdot \frac{\text{d} dr}{\text{d}\tau _i} \bigr ) \cdot t_0^{tax} + y \cdot \bigl ( \frac{\partial t_0^{tax}}{\partial p} \cdot \frac{\text{d} p}{\text{d}\tau _i} + \frac{\partial t_0^{tax}}{\partial dr} \cdot \frac{\text{d} dr}{\text{d}\tau _i} +\frac{\partial t_0^{tax}}{\partial \tau _i}\bigr ) }{\frac{\text{d}p}{\text{d}\tau _i} + S \cdot \frac{\text{d} dr}{\text{d}\tau _i}} \nonumber \\= \, & {} \frac{ \bigl ( y_p \cdot t_0^{tax} + y \cdot \frac{\partial t_0^{tax}}{\partial p} \bigr ) \cdot \bigl ( \frac{\text{d} p}{\text{d}\tau _i} + S\cdot \frac{\text{d} dr}{\text{d}\tau _i} \bigr ) + y \cdot \bigl ( \frac{\partial t_0^{tax}}{\partial dr} - S \cdot \frac{\partial t_0^{tax}}{\partial p} \bigr ) \cdot \frac{\text{d} dr}{\text{d}\tau _i} +y \cdot \frac{\partial t_0^{tax}}{\partial \tau _i}}{\frac{\text{d}p}{\text{d}\tau _i} + S \cdot \frac{\text{d} dr}{\text{d}\tau _i}} \nonumber \\= \, & {} y_p \cdot t_0^{tax} + y \cdot \frac{\partial t_0^{tax}}{\partial p} + y \cdot \frac{ \frac{\partial t_0^{tax}}{\partial \tau _i} + \bigl ( \frac{\partial t_0^{tax}}{\partial dr} - S \cdot \frac{\partial t_0^{tax}}{\partial p} \bigr ) \cdot \frac{\text{d} dr}{\text{d}\tau _i}}{\frac{\text{d}p}{\text{d}\tau _i} + S \cdot \frac{\text{d} dr}{\text{d}\tau _i} } \end{aligned}$$
(38)

Using Eqs. (9) and (12) the denominator of the last ratio of line 38 can be rewritten as

$$\begin{aligned}&\frac{\text{d}p}{\text{d}\tau _i} + S \cdot \frac{\text{d} dr}{\text{d}\tau _i}\\= \, & {} \frac{ \frac{\partial t_0}{\partial \tau _i} - \bigl (\mu - \frac{\partial t_0}{\partial dr} \bigr ) \cdot \frac{\text{d} dr}{\text{d} \tau _i} }{ 1-\frac{\partial t_0}{\partial p} } + \frac{\mu -\frac{\partial t_0}{\partial dr}}{1-\frac{\partial t_0}{\partial p}} \cdot \frac{\text{d} dr}{\text{d} \tau _i} \\= \, & {} \frac{ \frac{\partial t_0}{\partial \tau _i} }{ 1-\frac{\partial t_0}{\partial p} } \end{aligned}$$

Inserting this term for the denominator of the last ratio of Eq. (38), removing all items that do not depend on \(\tau _i\), and taking the reciprocal gives the result.

Appendix 6: Sign of weighting factor in line 24

According to Eq. (9), we have

$$\begin{aligned}&\frac{\partial t_0^{tax}}{\partial dr} - S \cdot \frac{\partial t_0^{tax}}{\partial p} =\frac{\partial t_0^{tax}}{\partial dr} - \frac{\mu - \frac{\partial t_0}{\partial dr}}{1-\frac{\partial t_0}{\partial p}} \cdot \frac{\partial t_0^{tax}}{\partial p}<0 \end{aligned}$$

Based on Eq. (7), these terms are calculated as

$$\begin{aligned}&\tau _c \cdot \bigl [ \mu \cdot (s_{dr}+1) - e^{-r}\cdot s_{dr} \cdot \frac{\mu }{1-\delta } \bigr ]\\&- \frac{\bigl [1-\tau _c - \frac{\tau _c\cdot (1-\delta -e^{-r})+\delta }{1-\delta }\cdot s_{dr}\bigr ] \cdot \mu }{(1-\tau _c \cdot e^{-r})\cdot \frac{1-\tau _p}{1-\delta }} \cdot \left(\tau _p + \tau _c \cdot e^{-r}\cdot \frac{1-\tau _p}{1-\delta }\right)<0\\\Leftrightarrow & {} (\tau _c - \tau _c \cdot e^{-r}-\tau _c \cdot \tau _p \cdot \delta + \tau _p \cdot \delta ) \cdot s_{dr}\\&< \tau _c - \tau _c \cdot e^{-r}-\tau _c \cdot \tau _p \cdot \delta + \tau _p \cdot \delta + \tau _p - e^{-r} \cdot \tau _c \cdot \tau _p\\\Leftrightarrow & {} s_{dr} < -1 + \underbrace{\frac{\tau _p \cdot (1- e^{-r} \cdot \tau _c )}{(1-e^{-r})\cdot \tau _c + (1-\tau _c)\cdot \tau _p \cdot \delta }}_{\ge 0} \end{aligned}$$

which holds since \(s_{dr}\le -1\).

Appendix 7: Derivation of the default ratio in Eq. (27)

According to the definition of dr,

$$\begin{aligned} dr= \, & {} \frac{e^{-r}\cdot {\mathbb{E}}[\max \{L_1-A_1;0\}]}{L_0} = \, e^{-r}\cdot {\mathbb{E}}\Bigl [\max \Big \{\frac{L_1}{L_0}-\underbrace{\frac{A_0}{L_0}}_{=s}\cdot e^r;0\Big \}\Bigr ] \nonumber \\= \, & {} {\mathbb{E}}\Bigl [\max \Big \{e^{-r}\cdot \frac{ L_1}{L_0};s\Big \}\Bigr ] - s \nonumber \\= \, & {} {\mathbb{P}}\Bigl ( e^{-r}\cdot \frac{ L_1}{L_0}> s \Bigr )\cdot {\mathbb{E}}\Bigl [e^{-r}\cdot \frac{ L_1}{L_0}\, \Big \vert \, e^{-r}\cdot \frac{ L_1}{L_0}> s\Bigr ] + s \cdot \mathbb{P}\Bigl ( e^{-r}\cdot \frac{ L_1}{L_0} \le s \Bigr )- s \nonumber \\= \, & {} {\mathbb{P}}\Bigl ( e^{-r}\cdot \frac{ L_1}{L_0}> s \Bigr )\cdot {\mathbb{E}}\Bigl [e^{-r}\cdot \frac{ L_1}{L_0}\, \Big \vert \, e^{-r}\cdot \frac{ L_1}{L_0}> s\Bigr ] - s \cdot {\mathbb{P}}\Bigl ( e^{-r}\cdot \frac{ L_1}{L_0} > s \Bigr ) \end{aligned}$$
(39)

Note that \(\ln (e^{-r}\cdot L_1/L_0) \sim N(-\sigma _L^2/2,\sigma _L^2)\). Hence,

$$\begin{aligned} \underbrace{{\mathbb{P}}\Bigl ( e^{-r}\cdot \frac{ L_1}{L_0}> s \Bigr )}_{={\mathbb{P}}(L_1>A_1)} = 1-\Phi \Bigl (\frac{\ln (s)+\sigma _L^2/2}{\sigma _L}\Bigr )=\Phi \Bigl (-\frac{\ln (s)+\sigma _L^2/2}{\sigma _L} \Bigr ) \end{aligned}$$

and (cf., e.g., Bebu and Mathew 2009, p. 378)

$$\begin{aligned} {\mathbb{E}}\Bigl [e^{-r}\cdot \frac{ L_1}{L_0}\, \Big \vert \, e^{-r}\cdot \frac{ L_1}{L_0} > s\Bigr ] = \frac{\Phi \Bigl (\sigma _L - \frac{\ln s + \sigma _L^2/2}{\sigma _L}\Bigr )}{\Phi \Bigl (- \frac{\ln s + \sigma _L^2/2}{\sigma _L}\Bigr )} \end{aligned}$$

Therefore, Eq. (39) can be rewritten as

$$\begin{aligned}&{\mathbb{P}}\Bigl ( e^{-r}\cdot \frac{ L_1}{L_0}> s \Bigr )\cdot {\mathbb{E}}\Bigl [e^{-r}\cdot \frac{ L_1}{L_0}\, \Big \vert \, e^{-r}\cdot \frac{ L_1}{L_0}> s\Bigr ] - s \cdot {\mathbb{P}}\Bigl ( e^{-r}\cdot \frac{ L_1}{L_0} > s \Bigr )\\= \, & {} \Phi \Bigl (\sigma _L - \frac{\ln s + \sigma _L^2/2}{\sigma _L} \Bigr ) - s \cdot \Phi \Bigl (-\frac{\ln (s)+\sigma _L^2/2}{\sigma _L} \Bigr ) \end{aligned}$$

Appendix 8: Derivation of the asset–liability ratio in equilibrium (Eqs. 32 and 33)

The derivation is analogous to Proposition 2 in Schlütter (2014). For \(t_0\) as defined in Eq. (7), (9) implies

$$\begin{aligned}&S = \frac{1-\tau _c-\frac{\tau _c\cdot (1-\delta -e^{-r})+\delta }{1-\delta }\cdot \frac{\partial s}{\partial dr}}{ \frac{(1-\tau _c \cdot e^{-r}) \cdot (1-\tau _p)}{1-\delta }}\cdot \mu \\\Leftrightarrow & {} S/ \mu \cdot (1-\tau _c \cdot e^{-r}) \cdot (1-\tau _p) = (1-\tau _c)\cdot (1-\delta ) - (\tau _c\cdot (1-\delta -e^{-r})+\delta )\cdot \frac{\partial s}{\partial dr}\\\Leftrightarrow & {} \frac{\partial s}{\partial dr}=- \frac{S/ \mu \cdot (1-\tau _c \cdot e^{-r}) \cdot (1-\tau _p)-(1-\tau _c)\cdot (1-\delta )}{ \tau _c\cdot (1-\delta -e^{-r})+\delta } \end{aligned}$$

According to Eqs. (30) and (28),

$$\begin{aligned}&\Phi \Bigl (-\frac{ln(s)}{\sigma _L}-\frac{\sigma _L}{2} \Bigr )= \frac{ \tau _c\cdot (1-\delta -e^{-r})+\delta }{S/ \mu \cdot (1-\tau _c \cdot e^{-r}) \cdot (1-\tau _p)-(1-\tau _c)\cdot (1-\delta )}\\\Leftrightarrow & {} -\frac{ln(s)}{\sigma _L}-\frac{\sigma _L}{2}=\Phi ^{-1}\Bigl ( \frac{ \tau _c\cdot (1-\delta -e^{-r})+\delta }{S/ \mu \cdot (1-\tau _c \cdot e^{-r}) \cdot (1-\tau _p)-(1-\tau _c)\cdot (1-\delta )}\Bigr )\\\Leftrightarrow & {} s=\exp \Bigl [-\sigma _L \cdot \Phi ^{-1}\Bigl ( \frac{ \tau _c\cdot (1-\delta -e^{-r})+\delta }{S/ \mu \cdot (1-\tau _c \cdot e^{-r}) \cdot (1-\tau _p)-(1-\tau _c)\cdot (1-\delta )}\Bigr ) -\frac{\sigma _L^2}{2} \Bigr ] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlütter, S. Optimal taxation in non-life insurance markets. Geneva Risk Insur Rev 44, 1–26 (2019). https://doi.org/10.1057/s10713-018-0035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/s10713-018-0035-x

Keywords

JEL Classification

Navigation