Spare parts logistics and installed base information

Abstract

Many of the challenges in spare parts logistics emerge due to the combination of large service networks, and sporadic/slow-moving demand. Customer heterogeneity and stringent service deadlines entail further challenges. Meanwhile, high revenue rates in service operations motivate companies to invest and optimize the service logistics function. An important aspect of the spare parts logistics function is its ability to support customer-specific requirements with respect to service deadlines. To support customer specific operations, many companies are actively maintaining and utilizing installed base data during forecasting, planning and execution stages. In this paper, we highlight the potential economic value of installed base data for spare parts logistics. We also discuss various data quality issues that are associated with the use of installed base data and show that planning performance depends on the quality dimensions.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. Acevedo J and Pistikopoulos EN (1996). A parametric MINLP algorithm for process synthesis problems under uncertainty . Ind Eng Chem Res 35(1): 147–158.

    Article  Google Scholar 

  2. Auramo J and Ala-Risku T (2005). Challenges for going downstream . Int J Logist: Res Appl 8: 333–345.

    Article  Google Scholar 

  3. Axsater S (1981). Aggregation of product data for hierarchical production planning . Opns Res 29: 744–756.

    Article  Google Scholar 

  4. Ballou DP and Pazer HL (1985). Modeling data and process quality in multi-input, multi-output information systems . Mngt Sci 31: 150–162.

    Article  Google Scholar 

  5. Ballou RH (1994). Measuring transport costing error in customer aggregation for facility location . Transport J 33(3): 49–59.

    Google Scholar 

  6. Ballou RH (2001). Unresolved issues in supply chain network design . Inform Syst Front 3: 417–426.

    Article  Google Scholar 

  7. Bender PS (1985). Logistics system design . In: Robeson JF and House RG (eds). The Distribution Handbook. The Free Press: New York, pp. 777–814.

    Google Scholar 

  8. Cachon GP and Fisher M (2000). Supply chain inventory management and the value of shared information . Mngt Sci 46: 1032–1048.

    Article  Google Scholar 

  9. Candas MF and Kutanoglu E (2007). Benefits of considering inventory in service parts logistics network design problems with time-based service constraints . IIE Trans 39: 159–176.

    Article  Google Scholar 

  10. Cohen M, Kamesam PV, Kleindorfer P, Lee H and Tekerian A (1990). Optimizer: IBM's multi-echelon inventory system for managing service logistics . Interfaces 20(1): 65–82.

    Article  Google Scholar 

  11. Cohen MA, Zheng Y and Agrawal V (1997). Service parts logistics: A benchmark analysis . IIE Trans 29: 627–639.

    Google Scholar 

  12. Cohen MA, Agrawal N and Agrawal V (2006). Winning in the aftermarket . Harvard Bus Rev 84(5): 129–138.

    Google Scholar 

  13. Daganzo CF (1987). Increasing model precision can reduce accuracy . Transport Sci 21(2): 100–105.

    Article  Google Scholar 

  14. Daganzo CF (1996). Logistics Systems Analysis . Springer-Verlag, Heidelberg: Germany.

    Book  Google Scholar 

  15. Erke Y, Christina Ma YH and Booth MC (2003). Method of determining inventory levels. Technical Report. United States Patent Publication 0061126A1.

  16. Fildes R, Nikolopoulos K, Crone S and Syntetos A (2008). Forecasting and operational research: A review . J Opl Res Soc 59(9): 1150–1172.

    Article  Google Scholar 

  17. Fisher ML, Raman A and McClelland AS (2000). Rocket science retailing is almost here-are you ready? Harvard Bus Rev 78(4): 115–124.

    Google Scholar 

  18. Fleischmann M, van Nunen JAEE and Grave B (2003). Integrating closed-loop supply chains and spare-parts management at IBM . Interfaces 33(6): 44–56.

    Article  Google Scholar 

  19. Fortuin L and Martin H (1999). Control of service parts . Int J Opns Prod Mngt 19: 950–971.

    Article  Google Scholar 

  20. Gecker R and Vigoroso M (2006). Best practices in service chain performance management: measuring the value of a profit-centric service operation. Technical Report. Aberdeen Group, URL http://www.aberdeen.com/summary/report/benchmark/RA_BPinSvcPerfMgmt_RG_3403.asp.

  21. Geoffrion AM and Nauss R (1977). Parametric and postoptimality analysis in integer linear programming . Mngt Sci 23(5): 453–466.

    Article  Google Scholar 

  22. Greenberg HJ (1998). An annotated biblography for post-solution analysis in mixed integer programming and combinatorial optimization . In: Woodruff DL (ed). Advances in Computational and Stochastic Optimization, Logic Programming, and Heuristic Search. Kluwer Academic Publishers: Dordrecht (Hingham, MA), pp. 97–147.

    Google Scholar 

  23. Huiskonen J (2001). Maintenance spare parts logistics: Special characteristics and strategic choices . Int J Prod Econ 71(1–3): 125–133.

    Article  Google Scholar 

  24. Jenkins L (1990). Parametric methods in integer linear programming . Ann Opns Res 27: 77–96.

    Article  Google Scholar 

  25. Jia Z and Ierapetritou MG (2006). Uncertainty analysis on the righthand side for MILP problems . AIChE J 52: 2486–2495.

    Article  Google Scholar 

  26. Korhonen P, Huttunen K and Eloratna E (1998). Demand chain management in a global enterprise information management view . Prod Plan Control 9: 526–531.

    Article  Google Scholar 

  27. Kranenburg A (2006). Spare parts inventory control under system availability constraints. PhD thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.

  28. Kutanoglu E (2008). Insights into inventory sharing in service parts logistics systems with time-based service levels . Comput Ind Eng 54: 341–358.

    Article  Google Scholar 

  29. Kutanoglu E and Mahajan M (2009). An inventory sharing and allocation method for a multi-location service parts logistics network with time-based service levels . Eur J Opl Res 194: 728–742.

    Article  Google Scholar 

  30. Lee WL, Strong DM, Kahn BK and Wang RY (2002). AIMQ: A methodology for information quality assessment . Inform Mngt 40(2): 133–146.

    Google Scholar 

  31. Leonard KJ, Lin J, Dalziel S, Yap R and Adams D (2005). Incorporating operations research techniques to evaluate information systems impact on healthcare . J Opl Res Soc: Special Issue: Meeting Health Challenges with OR 56: 173–179.

    Google Scholar 

  32. Magee JF, Copacino WC and Rosenfield DB (1985). Modern Logistics Management: Integrating Marketing Manufacturing and Physical Distribution . John Wiley and Sons: New York.

    Google Scholar 

  33. Mallach EG (2000). Decision Support and Data Warehouse Systems . McGraw-Hill: New York (Maidenhead, UK).

    Google Scholar 

  34. Olaya Y and Dyner I (2005). Modelling for policy assessment in the natural gas industry . J Opl Res Soc 56: 1122–1131.

    Article  Google Scholar 

  35. Oliva R and Kallenberg R (2003). Managing the transition from products to services . Int J Serv Ind Mngt 14(2): 160–172.

    Article  Google Scholar 

  36. Proudlove NC, Black S and Fletcher A (2007). OR and the challenge to improve the NHS: Modelling for insight and improvement in in-patient flows . J Opl Res Soc 58: 145–158.

    Article  Google Scholar 

  37. Rogers DF, Plante RD, Wong RT and Evans JR (1991). Aggregation and disaggregation techniques and methodology in optimization . Opns Res 39: 553–582.

    Article  Google Scholar 

  38. Sotskov YN, Leontev VK and Gordeev EN (1995). Some concepts of stability analysis in combinatorial optimization . Discrete Appl Math 58(2): 169–190.

    Article  Google Scholar 

  39. Thonemann UW (2002). Improving supply chain performance by sharing advance demand information . Eur J Opl Res 142: 81–107.

    Article  Google Scholar 

  40. Toktay B, Van der Laan EA and De Brito MP (2003). Managing Product Returns: The Role of Forecasting. ERIM Report Series Reference No. ERS-2003-023-LIS.

  41. Van Hoesel S and Wagelmans A (1999). On the complexity of postoptimality analysis of 0/1 programs . Discrete Appl Math 91(1–3): 251–263.

    Article  Google Scholar 

  42. Vigoroso M (2003). Service parts management: unlocking value and profit in the service chain. Technical Report. Aberdeen Group. URL http://www.aberdeen.com/summary/report/benchmark/serviceparts.asp.

  43. Wagelmans A (1990). Sensitivity analysis in combinatorial optimization. PhD thesis, Erasmus Universiteit Rotterdam, Rotterdam, The Netherlands.

  44. Wand Y and Wang R (1996). Anchoring data quality dimensions in ontological foundations . Communications of the ACM 39(11): 86–95.

    Article  Google Scholar 

  45. Wang RY and Strong DM (1996). Beyond accuracy: What data quality means to data consumers . J Mngt Inform Syst 12(4): 5–33.

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially sponsored by Transumo ECO project number GL05022b. The authors also acknowledge the contributions of IBM, The Netherlands to this project. The views presented in this paper represent the opinion of the authors only and does not necessarily represent the viewpoints or policy of IBM, The Netherlands.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M N Jalil.

Appendix. Test bed parameters

Appendix. Test bed parameters

Table A1.

Table a1 Test bed parameters

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jalil, M., Zuidwijk, R., Fleischmann, M. et al. Spare parts logistics and installed base information. J Oper Res Soc 62, 442–457 (2011). https://doi.org/10.1057/jors.2010.38

Download citation

Keywords

  • value of information
  • installed base information
  • information quality
  • forecasting
  • spare parts logistics planning
  • practice of OR