Abstract
In this article we provide a framework to assist with style allocation in Asian equity funds. We implement a nonparametric methodology to capture short-term stable time-varying relationships of otherwise long-term unstable relationships between numerous macroeconomic variables and style returns. We find that a nonparametric forecasting methodology produces positive performance after allowing for transaction costs, while the equivalent parametric forecasts are negative. The model can be implemented through tilting a funds style exposure to enhance performance. Even in the context of a long-only fund, the style exposures of the proposed model can be implemented as long–short exposures relative to a benchmark. Because the model is presented as a self financing market-neutral model, its implementation can be leveraged directly in a market-neutral fund or indirectly as (leveraged) style exposures in a long-only fund.
This is a preview of subscription content, access via your institution.




Notes
Although we accept an alternative ‘bottom-up’ approach of using style indices characteristics (for example, the momentum or valuation of a style index) can be used to forecast style returns as perfectly valid, we consider it as beyond the scope of this article.
iShares exist in MSCI US Size, Value, Momentum and Quality factors.
Asness and Frazzini (2013) show that the classical FF3 HML factor is best thought of as an 80/20 combination of value and momentum.
Bernanke and Boivin (2001) reconfirm the findings in Stock and Watson papers that large data sets can be utilized to improve forecast accuracy.
Early papers describing nonparametric regression include Rosenblatt (1956), Parzen (1962), Watson (1964), Nadaraya (1964) and Sheather and Jones (1991).
The Bloomberg codes for the variables are available upon request.
This technique is also known as the latent root criterion, or the eigenvalue-one criterion.
Turlach (1993) provides a summary of some of the possible choices.
A description of some of these methods and their implementation in statistical packages is provided in Sheather (2004).
Bloomberg categories {1, 16, 18, 2, 5, 19} and {6, 20, 3}.
See Table 2 for the definition of nrd.
The regression results are available upon request.
Sometimes referred to as the mean square prediction error.
A linear regression on a constant is equivalent to a 1-sample t-test.
The results of these regressions are available upon request.
The results from these regressions are available upon request.
Available upon request.
Tests related to OOS predictive models are described more fully in Clark and West (2007) and Clark and McCracken (2012).
References
Abdi, H. and Williams, L.J. (2010) Jackknife, Thousand Oaks, CA: Sage Publications, pp. 656–661.
Abramson, I. (1982) On bandwidth variation in Kernal estimates – A square root law. The Annals of Statistics 10 (4): 1217–1223.
Ait-Sahalia, Y. and Brandt, M. (2001) Variable selection for portfolio choice. Journal of Finance 56 (4): 1297–1351.
Alessi, L., Barigozzi, M. and Capasso, M. (2008) A Robust Criterion for Determining the Number of Static Factors in Approximate Factor Models. ECB Working Paper Series, No. 903.
Amenc, N., Malaise, P., Martellini, L. and Sfeir, D. (2003) Tactical style allocation – A new form of market neutral strategy. Journal of Alternative Investments 6 (1): 8–22.
Ammann, M. and Verhofen, M. (2006) The effect of market regimes on style allocation. Financial Markets & Portfolio Management 20 (3): 309–337.
Ang, A. and Bekaert, G. (2002) International asset allocation with regime shifts. Review of Financial Studies 15 (4): 1137–1187.
Ang, A. and Bekaert, G. (2004) How regimes affect asset allocation. Financial Analysts Journal 68 (March/April): 86–99.
Archanapalli, B.G., Switzer, L.N. and Panju, K. (2007) Equity style timing: A multi-style rotation model for the Russell large-cap and small cap growth and value style indexes. Journal of Asset Management 8 (1): 9–23.
Asness, C. and Frazzini, A. (2013) The devil in HML’s details. Journal of Portfolio Management 39 (4): 49–68.
Bai, J. and Ng, S. (2002) Determining the number of factors in approximate factor models. Econometrica 70 (1): 191–221.
Beckers, S. and Blair, B. (2002) Non parametric forecasting for conditional asset allocation. Journal of Asset Management 3 (3): 213–228.
Bender, J., Briand, R., Melas, D., Subramanian, R.A. and Subramanian, M. (2013) Deploying multi fator index allocations in institutional portfolios. MSCI Research Insights.
Bernanke, B. and Boivin, J. (2001) Monetary Policy in a Data Rich Environment. NBER Working Paper Series 8379.
Bowman, A.W. (1984) An alternative method of cross-validation for the smoothing of kernel density estimates. Biometrika 71 (2): 353–360.
Bretscheger, L. and Lechthaler, F. (2012) Common Risk Factors and the Macroeconomy: New Evidence from the Japanese Stock Market. Centre of Economic Research, ETH Zurich, Working Paper 12/160.
Bundoo, S.K. (2008) An augmented Fama and French three-factor model: New evidence from an emerging stock market. Applied Economics Letters 15 (15): 1213–1218.
Cakici, N., Fabozzi, F. and Tan, S. (2013) Size, value and momentum in emerging market stock returns. Emerging Markets Review 16 (C): 46–65.
Campbell, J.Y. and Thompson, S.B. (2008) Predicting excess stock returns out of sample: Can anything beat the historical average? Review of Financial Studies 21 (4): 1509–1531.
Carhart, M.M. (1997) On persistence in mutual fund performance. Journal of Finance 52 (1): 57–82.
Chamberlain, G. and Rothschild, M. (1983) Arbitrage, factor structure and mean-variance analysis in large asset markets. Econometrica 51 (5): 1305–1324.
Clark, T.E. and McCracken, M.W. (2012) In-sample tests of predictive ability: A new approach. Journal of Econometrics 170 (1): 1–14.
Clark, T.E. and West, K.D. (2007) Approximately normal tests for equal predictive accuracy in nested models. Journal of Econometrics 138 (1): 291–311.
Connor, G. and Korajczyk, R. (1986) Performance measurement with the arbitrage pricing theory: A new framework for analysis. Journal of Financial Economics 15 (3): 373–394.
Demir, S. and Toktamis, O. (2010) On the adaptive Nadaraya-Watson Kernal regression estimators. Journal of Mathematics and Statistics 39 (3): 429–437.
Djajadikerta, H. and Nartea, G. (2005) The Size and Book-to Market Effects and the Fama-French Three Factor Model in Small Markets: Preliminary Findings from New Zealand. Edith Cowan University Working Paper 0510.
Fabozzi, F., Focardi, S.M., Svetlozar, Rachev, T. and Arshanapalli, B.G. (2014) The Basics of Financial Econometrics: Tools, Concepts, and Asset Management Applications. Hoboken, NJ: John Wiley & Sons.
Faff, R.W. (2001) An examination of the Fama and French three-factor model using commercial available factors. Australian Journal of Management 26 (1): 1–17.
Faff, R. (2004) A simple test of the Fama and French model using daily data: Australian evidence. Applied Financial Economics 14: 83–92.
Fama, E.F. and French, K.R. (1992) The cross-section of expected stock returns. Journal of Finance 47 (2): 427–465.
Fama, E. and French, K.R. (2012) Size, value, and momentum in international stock returns. Journal of Financial Economics 105 (3): 457–472.
Faraway, J. and Jhun, M. (1990) Bootstrap choice of bandwidth for density estimation. Journal of the American Statistical Association 85 (412): 1110–1122.
Gaunt, C. (2004) Size and book-to-market effects and the Fama French three factor asset pricing model: Evidence from the Australian stock market. Accounting and Finance 44 (1): 27–44.
Griffin, J. (2002) Are the Fama and French factors global or country specific? The Review of Financial Studies 15 (3): 783–803.
Guirguis, H., Suen, M. and Theodore, T. (2012) How to avoid the value trap: Regime switching value investing, timing the value style index in a Markov regimes-switching model. Journal of Investment Management 10 (1): 52–64.
Hallin, M. and Liška, R. (2007) Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association 102 (478): 603–617.
Homsud, N., Wasunsakul, J., Phuangnark, S. and Joongpong, J. (2009) A study of Fama French three factors model and capital asset pricing model in the stock exchange of Thailand. International Research Journal of Finance and Economics 25 (March): 31–40.
Jegadeesh, N. and Titman, S. (1993) Return to buying winners and selling losers: Implications for stock market efficiency. Journal of Finance 48 (1): 65–91.
Kaiser, H. (1960) The application of electronic computers to factor analysis. Educational and Psychological Measurement 20 (1): 141–151.
Kao, D. and Shumaker, R. (1999) Equity style timing. Financial Analysts Journal 55 (1): 37–48.
Keim, D.B. and Stambaugh, R.F. (1986) Predicting returns in the stock and bond markets. Journal of Financial Economics 17 (2): 357–390.
Liu, P., Xu, K. and Zhao, Y. (2010) Market regimes, sectorial investments and time varying risk premiums. International Journal of Managerial Finance 7 (2): 107–133.
Maio, P. and Philip, D. (2012) Do Macro Variables Drive Stock and Bond Returns. Hanken School of Economics, Working Paper.
Nadaraya, E.A. (1964) On estimating regression. Theory of Probability and its Applications 9 (1): 141–142.
Narsky, I. and Porter, F.C. (2013) Statistical Analysis Techniques in Particle Physics. Hoboken, NJ: John Wiley & Sons.
Onatski, A. (2010) Determining the number of factors from empirical distribution of eigenvalues. Review of Economics and Statistics 92 (4): 1004–1016.
Parzen, E. (1962) On estimation of a probability density function and mode. Annals of Mathematical Statistics 33 (3): 1065–1076.
Quenouille, M.H. (1956) Notes on bias in estimation. Biometrika 43 (3/4): 353–360.
Rosenblatt, M. (1956) Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics 27 (3): 832–837.
Rudemo, M. (1982) Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics 9 (2): 65–78.
Sain, S.R. (2002) Multivariate locally adaptive density estimation. Computational Statistics & Data Analysis 39 (2): 165–186.
Scott, D.W. and Terrell, G.R. (1987) Biased and unbiased cross-validation in density estimation. Journal of the American Statistical Association 82 (414): 1131–1146.
Sheather, S.J. (2004) Density estimation – Statistical science. Institute of Mathematical Sciences 19 (4): 588–597.
Sheather, S.J. and Jones, M.C. (1991) A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society, Series B 53 (3): 683–690.
Silverman, B.W. (1986) Density Estimation. London: Chapman and Hall.
Stock, J.H. and Watson, M.W. (2002) Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association 97 (460): 1167–1179.
Tu, J. (2010) Is regime switching in stock returns important in portfolio decisions. Management Science 56 (7): 1198–1215.
Tukey, J.W. (1958) Bias and confidence in not quite large samples. Annals of Mathematical Statistics 29 (2): 614.
Turlach, B. (1993) Bandwidth selection in kernal density estimation: A review. Institut für Statistik und Ökonometrie, Humboldt-Universität zu Berlin, Discussion Paper 9307.
Walid, E.M. and Ahlem, E.M. (2009) New Evidence on the Applicability of Fama and French Three – Factor Model to the Japanese Stock Market. Osaka University, Working Paper.
Watson, G.S. (1964) Smooth regression analysis. Sankhyā Ser. A 26 (15): 175–184.
Zambom, A.Z. and Dias, R. (2012) A Review of Kernel Density Estimation with Applications to Econometrics. Universidade Estadual de Campinas, Working Paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary information accompanies this article on the Journal of Asset Management website (www.palgrave-journals.com/jam)
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Subbiah, M., Fabozzi, F. Equity style allocation: A nonparametric approach. J Asset Manag 17, 141–164 (2016). https://doi.org/10.1057/jam.2016.1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1057/jam.2016.1