Waiting time-based staff capacity and shift planning at blood collection sites

  • S. P. J. van BrummelenEmail author
  • N. M. van Dijk
  • K. van den Hurk
  • W. L. de Kort
Original Article


Sanquin, the organization responsible for blood collection in the Netherlands, aims to be donor-friendly. An important part of the perception of donor-friendliness is the experience of waiting times. At the same time, Sanquin needs to control the costs for blood collection. A significant step to shorten waiting times is to align walk-in arrivals, and staff capacity and shifts. We suggest a two-step procedure. First, we investigate two methods from queuing theory to compute the minimum number of staff members required for every half hour. Next, these minimum numbers of staff members will be used to determine optimal lengths and starting times of shifts with an Integer Linear Program. Finally, the practical implications of the method are shown with numerical results. These results show that the presented approach can bring significant savings while at the same time guaranteeing a waiting time-based service level for blood donors.



We wish to thank the anonymous reviewers for accurately reading the manuscript and their helpful comments.


  1. Ahmed, M.A., and T.M. Alkhamis. 2009. Simulation optimization for an emergency department healthcare unit in Kuwait. European Journal of Operational Research 198 (3): 936–942.CrossRefGoogle Scholar
  2. Alfonso, E., X. Xie, V. Augusto, and O. Garraud. 2013. Modelling and simulation of blood collection systems: Improvement of human resources allocation for better cost-effectiveness and reduction of candidate donor abandonment. Vox Sanguinis 104 (3): 225–233.CrossRefGoogle Scholar
  3. De Angelis, V., G. Felici, and P. Impelluso. 2003. Integrating simulation and optimisation in health care centre management. European Journal of Operational Research 150 (1): 101–114.CrossRefGoogle Scholar
  4. Baş, S., G. Carello, E. Lanzarone, Z. Ocak, and S. Yalndaǧ. 2016. Management of blood donation system: Literature review and research perspectives, 121–132. Berlin: Springer.Google Scholar
  5. Blake, J.T., and S. Shimla. 2014. Determining staffing requirements for blood donor clinics: The Canadian blood services experience. Transfusion 54 (3 Pt 2): 814–820.CrossRefGoogle Scholar
  6. Brennan, J.E., B.L. Golden, and H.K. Rappoport. 1992. Go with the flow: Improving red cross bloodmobiles using simulation analysis. Interfaces 22 (5): 1–13.CrossRefGoogle Scholar
  7. Bretthauer, K.M., and M.J. Côté. 1998. A model for planning resource requirements in health care organizations. Decision Sciences 29 (1): 243–270.CrossRefGoogle Scholar
  8. Centeno, M.A., R. Giachetti, R. Linn, and A.M. Ismail. 2003. Emergency departments II: A simulation-ILP based tool for scheduling ER staff. In Proceedings of the 35th Conference on Winter Simulation: Driving Innovation, Winter Simulation Conference, 1930–1938.Google Scholar
  9. Defraeye, M., and I. Van Nieuwenhuyse. 2013. Controlling excessive waiting times in small service systems with time-varying demand: An extension of the ISA algorithm. Decision Support Systems 54 (4): 1558–1567.CrossRefGoogle Scholar
  10. Defraeye, M., and I. Van Nieuwenhuyse. 2016. Staffing and scheduling under nonstationary demand for service: A literature review. Omega 58: 4–25.CrossRefGoogle Scholar
  11. Erdogan, G., E. Erkut, A. Ingolfsson, and G. Laporte. 2010. Scheduling ambulance crews for maximum coverage. Journal of the Operational Research Society 61 (4): 543–550.CrossRefGoogle Scholar
  12. Ernst, A.T., H. Jiang, M. Krishnamoorthy, and D. Sier. 2004. Staff scheduling and rostering: A review of applications, methods and models. European Journal of Operational Research 153 (1): 3–27.CrossRefGoogle Scholar
  13. Fukunaga, A., E. Hamilton, J. Fama, D. Andre, O. Matan, and I. Nourbakhsh. 2002. Staff scheduling for inbound call centers and customer contact centers. AI Magazine 23 (4): 30–40.Google Scholar
  14. Green, L.V., J. Soares, J.F. Giglio, and R.A. Green. 2006. Using queueing theory to increase the effectiveness of emergency department provider staffing. Academic Emergency Medicine 13 (1): 61–68.CrossRefGoogle Scholar
  15. Izady, N., and D. Worthington. 2012. Setting staffing requirements for time dependent queueing networks: The case of accident and emergency departments. European Journal of Operational Research 219 (3): 531–540.CrossRefGoogle Scholar
  16. McKeever, T., M.R. Sweeney, and A. Staines. 2006. An investigation of the impact of prolonged waiting times on blood donors in Ireland. Vox Sanguinis 90 (2): 113–8.CrossRefGoogle Scholar
  17. Pratt, M.L., and A.J. Grindon. 1982. Computer simulation analysis of blood donor queueing problems. Transfusion 22 (3): 234–7.CrossRefGoogle Scholar
  18. Sinreich, D., and O. Jabali. 2007. Staggered work shifts: A way to downsize and restructure an emergency department workforce yet maintain current operational performance. Health Care Management Science 10 (3): 293–308.CrossRefGoogle Scholar
  19. Testik, M.C., B.Y. Ozkaya, S. Aksu, and O.I. Ozcebe. 2012. Discovering blood donor arrival patterns using data mining: A method to investigate service quality at blood centers. Journal of Medical Systems 36 (2): 579–594.CrossRefGoogle Scholar
  20. van Brummelen, S.P.J., W.L. de Kort, and N.M. van Dijk. 2015. Waiting time computation for blood collection sites. Operations Research for Health Care 7: 70–80.CrossRefGoogle Scholar
  21. Van Mechelen, I. S., and P. L. M. Zonneveld. 2013. Capaciteitplanning en wachttijdbepaling, M.Sc. Thesis.Google Scholar
  22. Whitt, W. 1983. The queueing network analyzer. Bell System Technical Journal 62 (9): 2779–2815.CrossRefGoogle Scholar
  23. Winston, W. 2004. Operations research: Applications and algorithms. San Francisco: Thomson Brooks/Cole.Google Scholar
  24. Zeltyn, S., Y.N. Marmor, A. Mandelbaum, B. Carmeli, O. Greenshpan, Y. Mesika, S. Wasserkrug, P. Vortman, A. Shtub, T. Lauterman, D. Schwartz, K. Moskovitch, S. Tzafrir, and F. Basis. 2011. Simulation-based models of emergency departments: Operational, tactical, and strategic staffing. ACM Transactions on Modeling and Computer Simulation 21 (4): 1–25.CrossRefGoogle Scholar

Copyright information

© The OR Society 2017

Authors and Affiliations

  • S. P. J. van Brummelen
    • 1
    • 2
    • 3
    Email author
  • N. M. van Dijk
    • 1
    • 3
  • K. van den Hurk
    • 2
  • W. L. de Kort
    • 2
  1. 1.Centre for Healthcare Operations Improvement and ResearchUniversity of TwenteEnschedeThe Netherlands
  2. 2.Donor StudiesSanquin ResearchAmsterdamThe Netherlands
  3. 3.Stochastic Operations ResearchUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations