, Volume 14, Issue 3, pp 416–437 | Cite as

Remaking yeast: Metaphors as scientific tools in Saccharomyces cerevisiae 2.0

  • Erika Amethyst SzymanskiEmail author
Original Article


Synthetic biology appears to be moving toward engineering whole living organisms. This article addresses how Saccharomyces cerevisiae 2.0, a whole-genome construction project, presents an argument for a route toward that end through discursive tools it employs to construct “synthetic yeast.” I analyze metaphors in recent peer-reviewed literature associated with the synthetic yeast project, asking how these metaphors shape the nature of synthetic yeast and relate the yeast to its parts and to its engineers. While chromosomes and other genome components are handled with metaphors emphasizing scientific control, the absence of these metaphors’ extension to the whole organism leaves space for the synthetic yeast itself to have unpredicted and surprising emergent characteristics. I argue that examining metaphors as instruments of scientific construction in disciplinary discourse, independent of their use in science communication to lay audiences, contributes to conversations about how and what scientists construct in their movements toward ‘engineering life.’


Synthetic biology Yeast Genomes Metaphors Discourse analysis 



This work was supported through grants from the Biological and Biotechnological Sciences Research Council (BB/M005690/1, ERASynBio-IESY) and the European Research Council (ERC 616510-ENLIFE). I gratefully acknowledge the research foundations and ongoing assistance of the “Engineering Life” team led by Jane Calvert and including Dominic Berry, Emma Frow, Pablo Schyfter, Deborah Scott, and Robert Smith.

Compliance with ethical standards

Conflict of interest

I confirm that the attached manuscript is composed of original material not under review elsewhere and that the study on which the research is based has been subject to appropriate ethical review. I have no competing interest—intellectual or financial—in the research detailed in the manuscript.


  1. Ankeny, R.A., and S. Leonelli. 2011. What’s So Special About Model Organisms? Studies in History and Philosophy of Science Part A, Model-Based Representation in Scientific Practice 42: 313–323.Google Scholar
  2. Arkin, A., D. Berry, G. Church, F. Arnold, J. Boldt, O. Müller, A.D. Ellington, D. Endy, M. Fussenegger, E.R. Gold, J. Greenwood, S.Y. Lee, W. Lim, J. Minshull, T.H. Murray, G. Poste, K.L.J. Prather, H. El-Samad, C. Smolke, and R. Weiss. 2009. What’s in a name? Nature Biotechnology 27: 1071–1073.Google Scholar
  3. Brown, T.L. 2003. Making Truth: Metaphor in Science. Urbana: University of Illinois Press.Google Scholar
  4. Burke, K. 1968. Language as Symbolic Action. Berkeley: University of California Press.Google Scholar
  5. Calvert, J. 2008. The Commodification of Emergence: Systems Biology, Synthetic Biology and Intellectual Property. BioSocieties 3: 383–398.Google Scholar
  6. Ceccarelli, L. 2004. Neither Confusing Cacophony Nor Culinary Complements: A Case Study of Mixed Metaphors for Genomic Science. Written Communication 21: 92–105.Google Scholar
  7. Ceccarelli, L. 2013. On the Frontier of Science: An American Rhetoric of Exploration and Exploitation. East Lansing: Michigan State University Press.Google Scholar
  8. Chan, L.Y., S. Kosuri, and D. Endy. 2005. Refactoring Bacteriophage T7. Molecular Systems Biology 0018: 1–10.Google Scholar
  9. Christidou, V., K. Dimopoulos, and V. Koulaidis. 2004. Constructing Social Representations of Science and Technology: The Role of Metaphors in the Press and the Popular Scientific Magazines. Public Understanding of Science 13: 347–362.Google Scholar
  10. Condit, C.M. 1999. How the Public Understands Genetics: Non-deterministic and Non-discriminatory Interpretations of the “Blueprint” Metaphor. Public Understanding of Science 8: 169–180.Google Scholar
  11. de la Bellacasa, M.P. 2011. Matters of Care in Technoscience: Assembling Neglected Things. Social Studies of Science 41: 85–106.Google Scholar
  12. Dymond, J., and J. Boeke. 2012. The Saccharomyces Cerevisiae SCRaMbLE System and Genome Minimization. Bioengineered Bugs 3: 168–171.Google Scholar
  13. Dymond, J.S., S.M. Richardson, C.E. Coombes, T. Babatz, H. Muller, N. Annaluru, W.J. Blake, J.W. Schwerzmann, J. Dai, D.L. Lindstrom, A.C. Boeke, D.E. Gottschling, S. Chandrasegaran, J.S. Bader, J.D. Boeke. 2011. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477 (7365): 471–476.Google Scholar
  14. Ending the War Metaphor. 2006. The Changing Agenda for Unraveling the Host-Microbe Relationship—Workshop Summary. Washington DC: The National Academies Press.Google Scholar
  15. Endy, D. 2005. Foundations for Engineering Biology. Nature 438: 449–453.Google Scholar
  16. Foucault, M. 1989. The Archaeology of Knowledge. London: Routledge.Google Scholar
  17. Freddi, M., B. Korte, and J. Schmied. 2013. Developments and Trends in the Rhetoric of Science. European Journal of English Studies 17: 221–234.Google Scholar
  18. Frow, E.K. 2013. Making Big Promises Come True? Articulating and Realizing Value in Synthetic Biology. BioSocieties 8: 432–448.Google Scholar
  19. Gschmeidler, B., and A. Seiringer. 2012. “Knight in Shining Armour” or “Frankenstein’s Creation”? The Coverage of Synthetic Biology in German-Language Media. Public Understanding of Science 21: 163–173.Google Scholar
  20. Haraway, D. 1976. Crystals, Fabrics, and Fields: Metaphors that Shape Embryos. New Haven: Yale University Press.Google Scholar
  21. Hellsten, I., and B. Nerlich. 2011. Synthetic Biology: Building the Language for a New Science Brick by Metaphorical Brick. New Genetics and Society 30: 375–397.Google Scholar
  22. Hilgartner, S. 2015. Capturing the Imaginary: Vanguards, Visions, and the Synthetic Biology Revolution. In Science & Democracy: Making Knowledge and Making Power in the Biosciences and Beyond, ed. S. Hilgartner, C. Miller, and R. Hagendijk, 33–55. New York: Routledge.Google Scholar
  23. Howard, R.M. 1995. Plagiarisms, Authorships, and the Academic Death Penalty. College English 57 (7): 708–736.Google Scholar
  24. Hutchison, C.A., R.-Y. Chuang, V.N. Noskov, N. Assad-Garcia, T.J. Deerinck, M.H. Ellisman, J. Gill, K. Kannan, B.J. Karas, L. Ma, J.F. Pelletier, Z.-Q. Qi, R.A. Richter, E.A. Strychalski, L. Sun, Y. Suzuki, B. Tsvetanova, K.S. Wise, H.O. Smith, J.I. Glass, C. Merryman, D.G. Gibson, and J.C. Venter. 2016. Design and Synthesis of a Minimal Bacterial Genome. Science 351 (6280): aad6253-1-11.Google Scholar
  25. Keller, E.F. 1995. Refiguring Life: Metaphors of Twentieth Century Biology. New York: Columbia University Press.Google Scholar
  26. Keller, E.F. 2012. Lexicons, Kind-Terms, and World Changes. Historical Studies in the Natural Sciences 42: 527–531.Google Scholar
  27. Kendig, C., and T.T. Eckdahl. 2017. Reengineering Metaphysics: Modularity, Parthood, and Evolvability in Metabolic Engineering. Philosophy and Theory in Practical Biology 9 (8): 1–21.Google Scholar
  28. Kimmel, M. 2010. Why We Mix Metaphors (and Mix Them Well): Discourse Coherence, Conceptual Metaphor, and Beyond. Journal of Pragmatics 42: 97–115.Google Scholar
  29. Kuhn, T. 1962. The Structure of Scientific Revolutions. Chicago: University of Chicago Press.Google Scholar
  30. Lakoff, G., and M. Johnson. 1980. Metaphors We Live by. Chicago: University of Chicago Press.Google Scholar
  31. Leonelli, S., and R.A. Ankeny. 2013. What Makes a Model Organism? Endeavour 37: 209–212.Google Scholar
  32. Lin, Q., H. Qi, Y. Wu, and Y. Yuan. 2015. Robust Orthogonal Recombination System for Versatile Genomic Elements Rearrangement in Yeast Saccharomyces cerevisiae. Scientific Reports 5: 1–8.Google Scholar
  33. Mazza, A.-M., and S. Kendall. 2016. Making the Living World Engineerable: Science, Practice, and Policy: Proceedings of a Workshop—in Brief. Washington, D.C.: National Academies Press.Google Scholar
  34. Mercy, G., J. Mozziconacci, V.F. Scolari, K. Yang, G. Zhao, A. Thierry, Y. Luo, L.A. Mitchell, M. Shen, Y. Shen, R. Walker, W. Zhang, Y. Wu, Z. Xie, Z. Luo, Y. Cai, J. Dai, H. Yang, Y.-J. Yuan, J.D. Boeke, J.S. Bader, H. Muller, and R. Koszul. 2017. 3D Organization of Synthetic and Scrambled Chromosomes. Science 355 (1050): 1–7.Google Scholar
  35. Mitchell, L.A., A. Wang, G. Stracquadanio, Z. Kuang, X. Wang, K. Yang, S. Richardson, J.A. Martin, Y. Zhao, R. Walker, Y. Luo, H. Dai, K. Dong, Z. Tang, Y. Yang, Y. Cai, A. Heguy, B. Ueberheide, D. Fenyö, J. Dai, J.S. Bader, and J.D. Boeke. 2017. Synthesis, Debugging, and Effects of Synthetic Chromosome Consolidation: synVI and Beyond. Science 355 (1050): 1–11.Google Scholar
  36. Mol, A. 2002. The Body Multiple. Durham: Duke University Press.Google Scholar
  37. Molyneux-Hodgson, S., and M. Meyer. 2009. Tales of Emergence—Synthetic Biology as a Scientific Community in the Making. BioSocieties 4: 129–145.Google Scholar
  38. National Academies of Sciences, Engineering, and Medicine. 2016. Making the Living World Engineerable: Science, Practice, and Policy: Proceedings of a Workshop—in Brief. Washington, DC: The National Academies Press. Scholar
  39. Nerlich, B., and I. Hellsten. 2009. Beyond the Human Genome: Microbes, Metaphors and What It Means to be Human in an Interconnected Post-genomic World. New Genetics and Society 28: 19–36.Google Scholar
  40. Nicholson, D.J. 2013. Organisms ≠ Machines. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44: 669–678.Google Scholar
  41. Nietzsche, F. 1992. Truth and Falsity in an Extramoral Sense. A Review of General Semantics 49: 58–72.Google Scholar
  42. O’Malley, M.A., A. Powell, J.F. Davies, and J. Calvert. 2008. Knowledge-Making Distinctions in Synthetic Biology. BioEssays 30: 57–65.Google Scholar
  43. Palsson, B. 2000. The Challenges of In Silico Biology. Nature Biotechnology 18: 1147–1150.Google Scholar
  44. Paxson, H., and S. Helmreich. 2014. The Perils and Promises of Microbial Abundance: Novel Natures and Model Ecosystems, from Artisanal Cheese to Alien Seas. Social Studies of Science 44: 165–193.Google Scholar
  45. Porcar, M., and J. Peretó. 2012. Are We Doing Synthetic Biology? Systems and Synthetic Biology 6: 79–83.Google Scholar
  46. Pragglejaz Group. 2007. MIP: A Method for Identifying Metaphorically Used Words in Discourse. Metaphor and Symbol 22 (1): 1–39.Google Scholar
  47. Rheinberger, H.-J. 2005. A Reply to David Bloor: “Toward a Sociology of Epistemic Things”. Perspectives on Science 13: 406–410.Google Scholar
  48. Richardson, S.M., L.A. Mitchell, G. Stracquadanio, K. Yang, J.S. Dymond, J.E. DiCarlo, D. Lee, C.L.V. Huang, S. Chandrasegaran, Y. Cai, J.D. Boeke, and J.S. Bader. 2017. Design of a Synthetic Yeast Genome. Science 355 (1050): 1040–1044.Google Scholar
  49. Semino, E. 2008. Metaphor in Discourse. Cambridge: Cambridge University Press.Google Scholar
  50. Shen, Y., G. Stracquadanio, Y. Wang, K. Yang, L.A. Mitchell, Y. Xue, Y. Cai, T. Chen, J.S. Dymond, K. Kang, J. Gong, X. Zeng, Y. Zhang, Y. Li, Q. Feng, X. Xu, J. Wang, J. Wang, H. Yang, J.D. Boeke, and J.S. Bader. 2016. SCRaMbLE Generates Designed Combinatorial Stochastic Diversity in Synthetic Chromosomes. Genome Research 26 (1): 36–49.Google Scholar
  51. Shen, Y., Y. Wang, T. Chen, F. Gao, J. Gong, D. Abramczyk, R. Walker, H. Zhao, S. Chen, W. Liu, Y. Luo, C.A. Müller, A. Paul-Dubois-Taine, B. Alver, G. Stracquadanio, L.A. Mitchell, Z. Luo, Y. Fan, B. Zhou, B. Wen, F. Tan, Y. Wang, J. Zi, Z. Xie, B. Li, K. Yang, S.M. Richardson, H. Jiang, C.E. French, C.A. Nieduszynski, R. Koszul, A.L. Marston, Y. Yuan, J. Wang, J.S. Bader, J. Dai, J.D. Boeke, X. Xu, Y. Cai, H. Yang. 2017. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science 355 (6329): eaaf4791.Google Scholar
  52. Shetty, R.P., D. Endy, and T.F. Knight. 2008. Engineering BioBrick Vectors from BioBrick Parts. Journal of Biological Engineering 2: 5.Google Scholar
  53. Stein, R. 2017. Scientists Closer to Creating a Fully Synthetic Yeast Genome., 9 March.Google Scholar
  54. Stelmach, A., and B. Nerlich. 2015. Metaphors in Search of a Target: The Curious Case of Epigenetics. New Genetics and Society 34: 196–218.Google Scholar
  55. UK Synthetic Biology Coordination Group. 2012. A Synthetic Biology Roadmap for the UK. Swindon: Technology Strategy Board. Accessed 27 Dec 2016.
  56. Valve, H., and R. McNally. 2012. Articulating Scientific Practice with PROTEE: STS, Loyalties, and the Limits of Reflexivity. Science, Technology and Human Values 38 (4): 470–491.Google Scholar
  57. Walker, R.S.K. 2017. De Novo Biological Engineering of a tRNA Neochromosome in Yeast. PhD thesis, University of Edinburgh, Edinburgh, UK.Google Scholar
  58. Wu, Y., B.-Z. Li, M. Zhao, L.A. Mitchell, Z.-X. Xie, Q.-H. Lin, X. Wang, W.-H. Xiao, Y. Wang, X. Zhou, H. Liu, X. Li, M.-Z. Ding, D. Liu, L. Zhang, B.-L. Liu, X.-L. Wu, F.-F. Li, X.-T. Dong, B. Jia, W.-Z. Zhang, G.-Z. Jiang, Y. Liu, X. Bai, T.-Q. Song, Y. Chen, S.-J. Zhou, R.-Y. Zhu, F. Gao, Z. Kuang, X. Wang, M. Shen, K. Yang, G. Stracquadanio, S.M. Richardson, Y. Lin, L. Wang, R. Walker, Y. Luo, P.-S. Ma, H. Yang, Y. Cai, J. Dai, J.S. Bader, J.D. Boeke, and Y.-J. Yuan. 2017. Bug Mapping and Fitness Testing of Chemically Synthesized Chromosome X. Science 355 (1050): 1–6.Google Scholar
  59. Xie, Z.-X., B.-Z. Li, L.A. Mitchell, Y. Wu, X. Qi, Z. Jin, B. Jia, X. Wang, B.-X. Zeng, H.-M. Liu, X.-L. Wu, Q. Feng, W.-Z. Zhang, W. Liu, M.-Z. Ding, X. Li, G.-R. Zhao, J.-J. Qiao, J.-S. Cheng, M. Zhao, Z. Kuang, X. Wang, J.A. Martin, G. Stracquadanio, K. Yang, X. Bai, J. Zhao, M.-L. Hu, Q.-H. Lin, W.-Q. Zhang, M.-H. Shen, S. Chen, W. Su, E.-X. Wang, R. Guo, F. Zhai, X.-J. Guo, H.-X. Du, J.-Q. Zhu, T.-Q. Song, J.-J. Dai, F.-F. Li, G.-Z. Jiang, S.-L. Han, S.-Y. Liu, Z.-C. Yu, X.-N. Yang, K. Chen, C. Hu, D.-S. Li, N. Jia, Y. Liu, L.-T. Wang, S. Wang, X.-T. Wei, M.-Q. Fu, L.-M. Qu, S.-Y. Xin, T. Liu, K.-R. Tian, X.-N. Li, J.-H. Zhang, L.-X. Song, J.-G. Liu, J.-F. Lv, H. Xu, R. Tao, Y. Wang, T.-T. Zhang, Y.-X. Deng, Y.-R. Wang, T. Li, G.-X. Ye, X.-R. Xu, Z.-B. Xia, W. Zhang, S.-L. Yang, Y.-L. Liu, W.-Q. Ding, Z.-N. Liu, J.-Q. Zhu, N.-Z. Liu, R. Walker, Y. Luo, Y. Wang, Y. Shen, H. Yang, Y. Cai, P.-S. Ma, C.-T. Zhang, J.S. Bader, J.D. Boeke, and Y.-J. Yuan. 2017. “Perfect” Designer Chromosome V and Behavior of a Ring Derivative. Science 355 (1050): 1–7.Google Scholar
  60. Zhang, W., G. Zhao, Z. Luo, Y. Lin, L. Wang, Y. Guo, A. Wang, S. Jiang, Q. Jiang, J. Gong, Y. Wang, S. Hou, J. Huang, T. Li, Y. Qin, J. Dong, Q. Qin, J. Zhang, X. Zou, X. He, L. Zhao, Y. Xiao, M. Xu, E. Cheng, N. Huang, T. Zhou, Y. Shen, R. Walker, Y. Luo, Z. Kuang, L.A. Mitchell, K. Yang, S.M. Richardson, Y. Wu, B.-Z. Li, Y.-J. Yuan, H. Yang, J. Lin, G.-Q. Chen, Q. Wu, J.S. Bader, Y. Cai, J.D. Boeke, and J. Dai. 2017. Engineering the Ribosomal DNA in a Megabase Synthetic Chromosome. Science 355 (1050): 1–7.Google Scholar

Copyright information

© Springer Nature Limited 2018

Authors and Affiliations

  1. 1.Science, Technology, and Innovation StudiesUniversity of EdinburghEdinburghUK

Personalised recommendations