, Volume 14, Issue 3, pp 393–415 | Cite as

Living and labouring soils: Metagenomic ecology and a new agricultural revolution?

  • Céline GranjouEmail author
  • Catherine Phillips
Original Article


Soils teem with life, yet only in the last two decades have genomic approaches begun to reveal the secret liveliness of soil. No longer understood as ‘abiotic’, soil has become a dense genetic web entangling various forms of life, the majority of which remain unidentified. This paper focuses on the growing hopes to identify, categorise, and harness soil liveliness as it emerges from ongoing scientific research at the juncture of soil ecology, molecular biology, and agricultural development. Drawing upon fieldwork interviews and observations with social ecologists in France, we demonstrate how the advancement of soil metagenomics fosters new conceptions of soil as both ‘living’ and ‘labouring’. With these refigurations of soil, soil ecologists anticipate a new agro-ecological revolution in which agrochemicals will be replaced (or at least reduced) through farmers’ future employment of biota for soil services. We argue that new understandings of soil as lively and labouring are not only transforming in the sense of fostering a hoped-for agro-ecological transition, but that insights into how underground realms are becoming understood offer new ways into thinking through more-than-human biopolitics and (agricultural) bioeconomies.


Soil Soil liveliness Microbe ecology Metagenomics Biopolitics Agricultural development 



This research was supported by funding to Céline Granjou from LABEX ITEM (AlpSoil 2016–2018) and from the French National Agency for Research (PANBioptique 2009–2013). We thank the leaders of Labex ITEM for their generosity and open-mindedness. We offer our gratitude to the interviewees for their time and interest in social studies of soil science and technology: without them this research would have not been possible.


  1. Abrahamsson, S., and F. Bertoni. 2014. Compost politics: experimenting with togetherness in vermicomposting. Environmental Humanities 4: 125.Google Scholar
  2. Arrignon, M., and C. Bosc. 2017. Le plan français de transition agro-écologique et ses modes de justification politique La biodiversité au secours de la performance agricole. In Politiques de biodiversité, ed. D. Compagnon and E. Roday, 205–224. Paris: Presses de Sciences Po.Google Scholar
  3. Bardgett, R., and W.H. van der Putten. 2014. Belowground biodiversity and ecosystem functioning. Nature 515: 505–511.Google Scholar
  4. Bardgett, R. 2017. Belowground biotic interactions and ecosystem responses to global change, seminar presented at the Laboratory of Alpine Ecology/IRSTEA: 12 January. France: Grenoble.Google Scholar
  5. Baveye, P., J. Baveye, and J. Gowdy. 2016. Soil “ecosystem” services and natural capital: Critical appraisal of research on uncertain ground. Frontiers in Environmental Science. Scholar
  6. Bonneuil, Ch., and F. Thomas. 2009. Gènes, pouvoirs et profits. Recherche publique et régimes de production des savoirs, de Mendel aux OGM. Versailles/Lausanne: Éditions Quæ et Fondation pour le Progrès de l’Homme.Google Scholar
  7. Bourguignon, C. (2005). Regenerating the soil: from agronomy to agrocology. Other India Press.Google Scholar
  8. Braverman, I. (ed.). 2016a. Animals, bio-politics, law: Lively legalities. London: Routledge.Google Scholar
  9. Braverman, I. 2016b. Anticipating endangerment: The biopolitics of threatened species list. BioSocieties 12 (1): 132–157.Google Scholar
  10. Brock, W.H. 2002. Justus von Liebing: The chemical gatekeeper. Cambridge: Cambridge University Press.Google Scholar
  11. Clarke, A. 2005. Situational analysis: Grounded theory after the post-modern turn. Thousand Oaks: SAGE Publications.Google Scholar
  12. Cooper, M. 2008. Life as surplus. Biotechnology and capitalism in the neoliberal era. Washington: University of Washington Press.Google Scholar
  13. Cope, M., and H. Kurtz. 2016. Organizing, coding and analyzing qualitative data. In Key methods in geography, ed. N. Clifford, M. Cope, T. Gillespie, and S. French, 647–664. London: Sage.Google Scholar
  14. Cultivar. 2014. Actionnez la “clef de Sol”. Cultivar février 2014: 36–38.Google Scholar
  15. Darwin, C.R. 1884. The formation of vegetable mould though the action of worms, with observations on their habits. England: John Murray.Google Scholar
  16. Dequiedt, S., N.P.A. Saby, M. Lelievre, C. Jolivet, J. Thioulouse, B. Toutain, D. Arrouays, A. Bispo, P. Lemanceau, and L. Ranjard. 2011. Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Global Ecology and Biogeography 20: 641–652.Google Scholar
  17. Dominati, E., M. Patterson, and A. Mackay. 2010. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics 69: 1858–1868.Google Scholar
  18. Eggermont, Balian, E., Azevedo, J.M., Beumer, V., Brodin, T., Claudet, J., Fady, B., Grube, M., Keune, H., Lamarque, P., Reuter, K., Smith, M., van Ham, C., Weisser, W.M., Le Roux, X. 2015. Nature-based solutions: New influence for environmental management and research in Europe. GAIA 24, pp. 243–248.Google Scholar
  19. FAO (Food and Agriculture Organisation). 2011. Towards a global soil partnership for food security and climate change mitigation and adaptation. Rome: FAO. Accessed 26 July 2017.
  20. Foucault, M. 2009. Security, territory, population: Lectures at the Collège de France, 1977–1978. New York: Picador/Palgrave Macmillan.Google Scholar
  21. FRB (Fondation for Research on Biodiversity). 2011. Sols Vivants: La Face Cachée de la Biodiversité. Paris: FRB.Google Scholar
  22. Granjou, C., and J. Walker. 2016. Promises that matter: Reconfiguring ecology in the ecotrons. Science and Technology Studies 29 (3): 49–67.Google Scholar
  23. Greenhough, B. 2012. Where species meet and mingle: Endemic human-virus relations, embodied communication and more-than-human agency at the Common Cold Unit 1946–1990. Cultural Geographies 19 (3): 281–301.Google Scholar
  24. Goulet, F. 2013. Narratives of experience and production of knowledge within farmers’ groups. Journal of Rural Studies 32: 439–447.Google Scholar
  25. Helmreich, S. 2009. Alien Ocean: Anthropological voyages in microbial sea. Oakland: University of California Press.Google Scholar
  26. Hird, M.J. 2009. The origins of sociable life: Evolution after science studies. New York: Palgrave McMillan.Google Scholar
  27. Hird, M., and Clark, N. 2013. Deep shit. O-Zone: A Journal of Object-Oriented Studies, 1 (1), 44–52Google Scholar
  28. Joly, P.B. 2010. On the economics of scientific promises. In Débordements. Mélanges offerts à Michel Callon, ed. M. Akrich, Y. Barthe, F. Muniesa, and P. Mustar, 203–222. Paris: Presse des Mines.Google Scholar
  29. Kearnes, M., and L. Rickards. 2017. Earthly graves for environmental futures: Techno-burial practices. Futures 92: 48–58.Google Scholar
  30. Kloppenburg, J. 2004. First the seed: The political economy of plant biotechnology, 1492–2000. Madison: University of Wisconsin Press.Google Scholar
  31. La Vie. 2015. Le sol, un organisme vivant. La Vie 12 Nov, p. 18.Google Scholar
  32. Latour, B. 1984. Les Microbes. Guerre et paix. Paris: Métailié.Google Scholar
  33. Lavelle, P. 2000. Ecological challenges for soil science. Soil Science 165 (1): 73–86.Google Scholar
  34. Lorimer, J. 2017. Probiotic environmentalities: Rewilding with wolves and worms. Theory, Culture & Society 34 (4): 27–48.Google Scholar
  35. Lorimer, J. 2016. Gut buddies: Multispecies studies and the microbiome. Environmental Humanities 8 (1): 57–76.Google Scholar
  36. MEA (Millennium Ecosystem Assessment). 2005. Ecosystems and human well-being: Synthesis. Washington, DC: Island Press.Google Scholar
  37. Maeght-Bournay, O., Valceschini, E. and Cornu, P. 2018. L’histoire de l’INRA entre science et politique. Editions Quae.Google Scholar
  38. Margulies, M., Egholm, M., Altman W.E., Attiya, S., Bader1, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y., Chen, Z., Dewell, S.B., Du, L., Fierro, J.M., Gomes, X.V., Godwin, B.C., He, W., Helgesen, S., Ho, C., Irzyk, G.P., Jando, S.C., Alenquer, M.L.I., Jarvie, T., Jirage, K.B., Kim, J., Knight, J.R., Lanza, J.R., Leamon, J.H., Lefkowitz, S.M., Lei, M., Li, J., Lohman, K.L., Lu, H., Makhijani, V.B., McDade, K. E., McKenna, M.P., Myers, E.W., Nickerson, E., Nobile, J.R., Plant, R., Puc, B.P., Ronan, M.T., Roth, G.T., Sarkis, G.J., Simons, J.F. Simpson, J.W., Srinivasan, M., Tartaro, K.R., Tomasz, A., Vogt, K.A., Volkmer, G.A., Wang, S.H., Wang, Y., Weiner, M.P., Yu, P., Begley R.F. and Rothberg, J.M. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, pp. 376–380.Google Scholar
  39. Margulis, L. 1988. Symbiotic Planet. New York, NY: Basic Books.Google Scholar
  40. Maron, P.A., C. Mougel, and L. Ranjard. 2011. Soil microbial diversity: Methodological strategy, spatial overview and functional interest. Comptes Rendus Biologies 334: 403–411.Google Scholar
  41. Nesme, J., W. Achouak, S.N. Agathos, M. Bailey, P. Baldrian, D. Brunel, A. Frostegård, T. Heulin, J.K. Jansson, E. Jurkevitch, K. Kruus, G.A. Kowalchuk, A.M. Lagares, H.M. Lappin-Scott, P. Lemanceau, D. Le Paslier, I. Mandic-Mulec, J.C. Murrell, D. Myrold, R. Nalin, P. Nannipieri, J.D. Neufeld, F. O’Gara, J. Parnell, A. Pühler, V. Pylro, J.L. Ramos, L.F.W. Roesch, M. Schloter, C. Schleper, A. Sczyrba, A. Sessitsch, S. Sjöling, J. Sørensen, C. Tebbe, E. Topp, G. Tsiamis, J. Dirk van Elsas, G. van Keulen, F. Widmer, M. Wagner, T. Zhang, X. Zhang, L. Zhao, Y.-G. Zhu, T.M. Vogel, and P. Simonet. 2016. Back to the future of soil metagenomics. Frontiers in Microbiology 7: 73.Google Scholar
  42. Ohlson, K. 2014. The Soil Will Save Us. New York: Rodale.Google Scholar
  43. Paxson, H. 2008. Post-Pasteurian cultures: The microbiolopolitics of raw-milk cheese in the United States. Cultural Anthropology 23 (1): 15–47.Google Scholar
  44. Paxson, H. 2010. Locating value in artisan cheese: Reverse engineering terroir for new-world landscapes. American Anthropologist 112 (3): 444–457.Google Scholar
  45. Paxson, H., and S. Helmreich. 2014. The perils and promises of microbial abundance: Novel natures and model ecosystems from artisanal cheese to alien seas. Social Studies of Science 44 (2): 165–193.Google Scholar
  46. Peralta, A.L., D. Stuart, A.D. Kent, and J.T. Lennon. 2014. A socio-ecological framework for ‘micromanaging’ microbial services. Frontiers in Ecology and the Environment 12 (9): 524–531.Google Scholar
  47. Phillips, C. 2016. Saving more than seeds: Practices and politics of seed saving. London: Routledge.Google Scholar
  48. Puig de la Bellacasa, M. 2014. Encountering bioinfrastructure: Ecological struggles and the sciences of soil. Social epistemology: a journal of knowledge, culture and society 28 (1): 26–40.Google Scholar
  49. Puig de la Bellacasa, M. 2015. Making time for soil: Technoscientific futurity and the pace of care. Social Studies of Science 45: 738–748.Google Scholar
  50. Rémy, J. 1995. Le manant, le savant et l’esthète : Identités professionnelles et mesures agri-environnementales. Natures, Sciences, Sociétés 3 (3): 252–257.Google Scholar
  51. Réussir Grandes Cultures. 2015. La vie du sol sort de l’ombre Réussir Grandes Cultures 22(293). Joly-August 2015: 24–31.Google Scholar
  52. Réussir Vigne, 2014. L’analyse biologique, une nouvelle donne. Réussir Vigne 222: 38–39.Google Scholar
  53. Robinson, D.A., B.M. Jackson, B.E. Clothier, D.A. Dominati, S.C. Marchant, D.M. Cooper, and K.L. Bristow. 2013. Advances in soil ecosystem services: Concepts, models and applications for earth system life support. Vadose Zone Journal 12: 13.Google Scholar
  54. Science et Avenir. 2015a. Microcosmos sous nos pieds. Sciences et Avenir 819, May 2015: 56–59.Google Scholar
  55. Science et Avenir. 2015b. L’agriculture sens dessus dessous. Sciences et Avenir 825, November 2015: 64–67.Google Scholar
  56. Schulze, E.D., and H.A. Mooney (eds.). 1994. Biodiversity and ecosystem function. New York: Springer.Google Scholar
  57. Spackman, C. 2017. Formulating citizenship: The microbiopolitics of the malfunctioning functional beverage. BioSocieties 13 (1): 41–63.Google Scholar
  58. Thompson, P.B. 1995. The spirit of the soil: Agriculture and environmental ethics. New York: Routledge.Google Scholar
  59. Torsviq, V., and L. Øvreås. 2002. Microbial diversity and function in soil: From genes to ecosystems. Current Opinion in Microbiology 5 (3): 240–245.Google Scholar
  60. Tsiafouli, M.A., et al. 2015. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology 21 (2): 973–985.Google Scholar
  61. van der Putten, W.H., J.M. Anderson, R.D. Bardgett, et al. 2004. The sustainable delivery of goods and services provided by soil biota. In Sustaining biodiversity and ecosystem services in soils and sediments, ed. D.H. Wall, 15–43. Washington, DC: Island Press.Google Scholar
  62. Wardle, D.A., R.D. Bardgett, J.N. Klironomos, H. Setala, W.H. van der Putten, and D.H. Wall. 2004. Ecological linkages between aboveground and belowground biota. Science 304: 1629–1633.Google Scholar
  63. Wolfe, C. 2016. Foreword. “life” and “the living”, law and norm. In: Braverman, I. (ed.) Animals, bio-politics, law: lively legalities, London: Routledge, pp. 13–20.Google Scholar
  64. Wolfe, C. 2012. Before the law: Humans and other animals in a biopolitical frame. Chicago: University of Chicago Press.Google Scholar
  65. Wu, T., E. Ayres, R.D. Bardgett, D.H. Wall, and J.R. Garey. 2011. Molecular study of worldwide distribution and diversity of soil animals. PNAS 108 (43): 17720–17725.Google Scholar

Copyright information

© Springer Nature Limited 2018

Authors and Affiliations

  1. 1.University Grenoble Alps IRSTEAGrenobleFrance
  2. 2.Pacte, U. Grenoble AlpsGrenobleFrance
  3. 3.LISIS Interdisciplinary Laboratory on Science, Innovation and SocietyU. Paris Est Marne la ValléeParisFrance
  4. 4.School of GeographyUniversity of MelbourneCarltonAustralia

Personalised recommendations