Advertisement

The Herbicide Revolution in Developing Countries: Patterns, Causes, and Implications

  • Steven HaggbladeEmail author
  • Bart Minten
  • Carl Pray
  • Thomas Reardon
  • David Zilberman
Original Article

Abstract

Two major shocks in global supply systems have driven a rapid recent surge in herbicide adoption in the developing world. A flood of off-patent herbicide formulations has hit global markets at the same time that emerging low-cost Asian suppliers have mastered herbicide production technologies, scaled up productive capacity, and significantly lowered production costs. Together, they have increased availability and driven down herbicide costs in farming communities across the developing world. In settings where rural wage rates face upwards pressure, from non-farm and urban employment alternatives, herbicide adoption has responded rapidly. The years since 2005, in particular, have witnessed a sharp spurt in herbicide adoption in countries as diverse as China and Ethiopia. The six case studies reported in this special issue – the USA, EU, China, India, Ethiopia, and Mali – examine the differences in timing, key drivers, and consequences of herbicide adoption across this broad range of global settings.

Keywords

agriculture herbicides global intensification environment 

Les systèmes d’approvisionnements mondiaux ont subi deux chocs importants, qui ont engendré la hausse récente et rapide de l’adoption des herbicides dans les pays en voie de développement. D’abord, les marchés globaux ont étés inondés par des herbicides hors protection de brevet. Au même temps, des nouveaux fournisseurs asiatiques ultra-compétitifs ont maitrisé les technologies de production des herbicides, augmenté leurs capacités de production, et considérablement baissé les couts de production. Parmi les communautés agricoles dans les pays en développement, ces deux facteurs ont augmenté la disponibilité des herbicides et baissé leurs couts. Dans les localités où les salaires ruraux font face à des pressions à la hausse (dû à d’autres alternatives d’emploi, soit agricoles que non agricoles), l’adoption des herbicides s’est rapidement installé. En particulier, à partir du 2005, chaque année a été marqué par une forte croissance dans l’adoption des herbicides dans des pays si différents comme la Chine et l’Ethiopie. Les six études reportées dans cette édition spéciale – les Etas Unis, l’Union Européenne, la Chine, l’Inde, l’Ethiopie et le Mali – examinent les différences clés dans l’adoption des herbicides (la chronologie de cette adoption, ses moteurs principaux, et ces conséquences) dans cet ensemble d’environnements si différents.

Notes

Acknowledgments

The authors wish to thank Jikun Huang, Scott Swinton, and Justus Wesseler for their highly perceptive insights and constructive comments on earlier drafts of this paper.

References

  1. Abel, W. (1978) Gesehichte der deutschen Landwirtschaft vom friihen Mittelalter bis zum 19. Jahrhundert. Ulmer, Stuttgart.Google Scholar
  2. Ashour, M., Billings, L., Gilligan, D., Hoel, J.B. and Karachiwalla, N. (2016) Do beliefs abouty agricultural inputs counterfeiting correspond with actual rates of counterfeiting? Evidence from Uganda. IFPRI Discussion Paper 01552. Washington, DC: International Food Policy Research Institute.Google Scholar
  3. Assima, A., Haggblade, S. and Smale, M. (2017) Counterfeit herbicides and farm productivity in Mali: A multivalued treatment approach. Feed the Future Innovation Lab Research Paper No. 50. East Lansing, Michigan: Michigan State University.Google Scholar
  4. Barrett, M., Soteres, J. and Shaw, D. (2016) Carrots and sticks: Incentives and regulations for herbicide resistance management and changing behavior. Weed Science Special Issue, pp. 627–640.Google Scholar
  5. Barrows, G., Sexton, S. and Zilberman, D. (2014) Agricultural biotechnology: The promise and prospects of genetically modified crops. Journal of Economic Perspectives 28(1): 99–120.CrossRefGoogle Scholar
  6. BASF. (2017) Clearfield® delivers effective, season-long weed control. https://agriculture.basf.com/en/Crop-Protection/Clearfield.html
  7. Beckmann, V. and Wesseler, J. (2003) How labour organization may affect technology adoption: An analytical framework analysing the case of integrated pest management. Environment and Development Economics 8: 437–450.CrossRefGoogle Scholar
  8. Beltran, J.C., Pannell, D.J. and Doole, G.J. (2012) Economic implications of herbicide resistance and high labour costs for management of annual barnyardgrass in Philippine rice farming systems. Crop Protection 31: 31–39.CrossRefGoogle Scholar
  9. Benbrook, C.M. (2016) Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe 28(3): 1–15.Google Scholar
  10. Besley, T. and Case, A. (1993) Modeling technology adoption in developing countries. American Economic Review 83(2): 396–402.Google Scholar
  11. Bonanno, A., Materia, V., Venus, T. and Wesseler, J. (2017) The plant protection products (PPP) sector in the European Union: A special view on herbicides. European Journal of Development Research. doi: 10.1057/s41287-017-0088-1.
  12. Bonny, S. (2016) Genetically modified herbicide-tolerant crops, weeds, and herbicides: Overview and impact. Environmental Management 57(1): 31–48.CrossRefGoogle Scholar
  13. Brookes, G. (2016) The contribution of glyphosate to agriculture in Indonesia and implications of restrictions on its use. Paper prepared for the 20th ICABR conferences, Transforming the bio-economy: Behavior, innovation and science. Ravello, Italy, June 26–29, 2016.Google Scholar
  14. Charles, D. (2001) Lords of the harvest: biotech, big money and the future of food. Cambridge, MA: Perseus Books.Google Scholar
  15. CIRAD- GRET. (2012) Memento de l’agronome. Editions du GRET, Edition Quae, Ministere français des affaires étrangères.Google Scholar
  16. Das Gupta, S., Minten, B., Rao, N.C., Reardon, T. (2017) The rapid diffusion of herbicides in farming in India: Patterns, determinants, and effects on labor productivity. European Journal of Development Research. doi: 10.1057/s41287-017-0091-6.Google Scholar
  17. Dominguez, I. (2015) Innovation beyond the AI: Trends in off-patent crop protection. Agra-net, https://www.agra-net.com/agra/agrow/interviews-features/innovation-beyond-the-ai-trends-in-off-patent-crop-protection-500039.htm, December 4, 2016
  18. Dow. (2011) Dow AgroSciences Identifies Lead Molecule in Collaboration with GVK BiosciencesTuesday, January 11, 2011. INDIANAPOLIS & HYDERABAD, India http://newsroom.dowagro.com/press-release/dow-agrosciences-identifies-lead-molecule-collaboration-gvk-biosciences. April 11, 2017.
  19. Duke, S.O. (2012) Why have no new herbicide modes of action appeared in recent years? Pest Management Science 68: 505–512.CrossRefGoogle Scholar
  20. Ekboir, J. (2003) Research and technology policies in innovation systems: Zero tillage in Brazil. Research Policy 32: 573–586.CrossRefGoogle Scholar
  21. Erickson, B.E., Bomgardner, M.M. (2015) Rocky road for roundup: Resistant weeds, fears of health effects drive market for alternatives to widely used herbicide C&EN, Vol. 93, Issue 37, pp. 10–15Google Scholar
  22. European Commission. (2007) EU Policy for a sustainable use of pesticides. The story behind the Strategy. Luxembourg: Office for Official Publications of the European CommunitiesGoogle Scholar
  23. Fernandez, I. (2002) The glyphosate market: A ‘Roundup’. Frost and Sullivan Market Insight. http://www.frost.com/prod/servlet/market-insight-print.pag?docid=JEVS-5N2CZG
  24. Fernandez-Cornejo, J., Hallahan, C., Nehring, R., Wechsler, S., and Grube, A. (2013) Conservation tillage, herbicide use, and genetically engineered crops in the United States: The case of soybeans. AgBioForum 15(3) Article 1.Google Scholar
  25. Frisvold, G.B. and Ervin, D.E. (2016) Theme overview: Herbicide resistance management. Choices 31(4):1–4.Google Scholar
  26. Fuglie, K.O., Heisey, P.W., King, J.L., Pray, C.E., Day-Rubenstein, K., Schimmelpfennig, D., Wang,S.L. and Karmarkar-Deshmukh, R. (2011) Research Investments and Market Structure in the Food Processing, Agricultural Input, and Biofuel Industries Worldwide. ERR-130. U.S. Dept. of Agriculture, Econ. Res. Serv.Google Scholar
  27. Gianessi, L.P. (2013) The increasing importance of herbicides in worldwide crop production. Pest Management Sciences 69: 1099–1105.CrossRefGoogle Scholar
  28. Gianessi, L.P. and Reigner, N.P. (2007) The value of herbicides in US crop production. Weed Technology 21: 559–566.CrossRefGoogle Scholar
  29. Gianessi, L. and Williams, A. (2011) Overlooking the obvious: The opportunity for herbicides in Africa. Outlooks on Pest Management (October): 2011–2015.Google Scholar
  30. Gill, K.S., Arshad, M.A. and Moyer, J.R. (1997) Cultural control of weeds. In D. Pimentel (ed.) Techniques for Reducing Pesticide Use: Economic and Environmental Benefits. New York: Wiley, pp. 237–275.Google Scholar
  31. Grabowski, P. and Jayne, T.S. (2016) Analyzing Trends in Herbicide Use in Sub-Saharan Africa. Department of Agriculture, Food and Resource Economics. International Development Working Paper 141. Michigan State University, East Lansing, MI.Google Scholar
  32. Griliches, Z. (1960) Hybrid corn and the economics of innovation. Science 132(3422): 833–850.CrossRefGoogle Scholar
  33. Haggblade, S., Smale, M., Kergna, A., Thériault, V. and Assima, A. (2017) Causes and consequences of increasing herbicide use in Mali. European Journal of Development Research (this issue).Google Scholar
  34. Hall, D.C. and Moffitt, L.J. (2002) Modelling for pesticide productivity measurement. In: D.C. Hall, L.J. Moffitt (eds.) Advances in the Economics of Environmental Resources 4: Economics of Pesticides, Sustainable Food Production, and Organic Food Markets. Oxford: Elsevier.Google Scholar
  35. Harlan, J.R. (1992) Crops and man. Madison, Wisconsin: American Society of Agronomy.Google Scholar
  36. Harlan, J R. (1995) The living fields: Our agricultural heritage. Cambridge, UK: Cambridge University Press.Google Scholar
  37. Harper, C.R. and Zilberman, D. (1992) Pesticides and worker safety. American Journal of Agricultural Economics 74(1): 68–78.CrossRefGoogle Scholar
  38. Hay, J.R. (1974) Gains to the grower from weed science. Weed Science 22(5): 439–442.Google Scholar
  39. Hayami, Y. and Ruttan, V.W. (1971) Agricultural Development: An International Perspective. Baltimore: Johns Hopkins University Press.Google Scholar
  40. Heap, I. (2014) Global perspective of herbicide-resistant weeds. Pest Management Science 70: 1306–1315.CrossRefGoogle Scholar
  41. Huang, J., Wang, S. and Xiao, Z. (2017) Rising herbicide use and its driving forces in China. European Journal of Development Research. doi: 10.1057/s41287-017-0081-8.Google Scholar
  42. IFAD. (2014) Youth and Agriculture: Key Challenges and Concrete Solutions. Rome: Food and Agriculture Organization.Google Scholar
  43. Kent, R., Johnson, D.E., Becker, M. (2001) The influences of cropping system on weed communities of rice in Cote d’Ivoire, West Africa. Agriculture, Ecosystems and Environment 87: 299–307.CrossRefGoogle Scholar
  44. Lichtenberg, E. and Zilberman, D. (1986) The econometrics of damage control: Why specification matters. American Journal of Agricultural Economics 68(2): 261–273Google Scholar
  45. Losch, B., Fréguin-Gresh, S. and White, E.T. (2012) Structural transformation and rural change revisited: Challenges for late developing countries in a globalizing world. Washington, DC: The World Bank.CrossRefGoogle Scholar
  46. MIR Plus. (2012) Evaluation de la qualité des pesticides commercialisés dans huit pays de l’espace CEDEAO. Abuja and Abidjan: ECOWAS and UEMOA.Google Scholar
  47. Monsanto. (2016) Roundup Ready Soybean Patent Expiration. http://www.monsanto.com/newsviews/pages/roundup-ready-patent-expiration.aspx, April 13, 2017.
  48. Monsanto. (2017) Biodirect: Sustainable solutions for agriculture. http://www.monsanto.com/products/pages/biodirect.aspx, April 11, 2017.
  49. National Research Council (NRC) 2016. Genetically Engineered Crops: Experiences and Prospects. Washington, DC: National Academies Press.Google Scholar
  50. Oerke, E.C. (2006) Crop losses to pests. The Journal of Agricultural Science 144(1):31–43.CrossRefGoogle Scholar
  51. Olmstead, A.L. and Rhode, P.W. (1993) Induced innovation in American agriculture. Journal of Political Economy 101(1): 100–118.CrossRefGoogle Scholar
  52. Osteen, C.D. and Fernandez-Cornejo, J. (2016) Herbicide use trends: A backgrounder. Choices 31(4): 1–7.Google Scholar
  53. Pannell, D.J. and Zilberman, D. (2001) Economic and sociological factors affecting growers’ decision making on herbicide resistance. Chapter 7. In: D.L. Shaner and S.B. Powles (eds.) Herbicide Resistance and World Grains. Boca Raton, FL: CRC Press, pp. 251–277.Google Scholar
  54. Peterson, G.E. (1967) The discovery and development of 2,4-D. Agricultural History 41: 243–253.Google Scholar
  55. Pfrenning, M., Palfay, G. and Guillet, T. (2008) The CLEARFIELD technology – A new broad-spectrum post-emergence weed control system for European sunflower growers. Journal of Plant Diseases and Protection 21: 1861–4051.Google Scholar
  56. Pimentel, D. (2005) Environmental and economic costs of the application of pesticides primarily in the United States. Environment. Development and Sustainability 7: 229–252.CrossRefGoogle Scholar
  57. Pingali, P.L. (2001) Environmental consequences of agricultural commercialization in Asia. Environment and Development Economics 6: 483–502.CrossRefGoogle Scholar
  58. Pingali, P.L. (2007) Agricultural Mechanization: Adoption Patterns and Economic Impact. Handbook of Agricultural Economics, Vol. 3. Amsterdam: Elsevier.Google Scholar
  59. Pingali, P.L. and Marquez, C.B. (1996) Herbicides and rice farmer health: A Philippine study. In R. Nayler (ed.) Herbicides in Asian Rice: Transitions in Weed Management. Los Banos, Philippines: International Rice Research Institute.Google Scholar
  60. Pingali, P.L. and Roger, Pierre A. (1995) Impact of pesticides on farmer health and the rice environment. Natural Resource Management and Policy. New York: Springer.CrossRefGoogle Scholar
  61. Rao, A.N. and Chauhan, B.S. (2015) Weeds and weed management in India – a review. In: Weed Science in the Asian-Pacific Region, pp. 87–118. Hyderbad: Indian Society of Weed Science.Google Scholar
  62. Ratcliffe, S.T., Baur, M., Beckie, H.J., Giesler, L.J., Leppa, N.C. and Schroeder, J. (2017) Crop protection contributions toward agricultural productivity. CAST Issue Paper No. 58. (April 2017). Washington, DC: U.S. Department of Agriculture.Google Scholar
  63. Rodenburg, J. and Johnson, D.E. (2013) Managing weeds of rice in Africa. In: M.C.S. Wopereis (ed.) Realizing Africa’s Rice Promise. Bouaké: Africa Rice, pp. 204–212.Google Scholar
  64. Rogers, E.M. (1962) Diffusion of Innovations. New York: Free Press.Google Scholar
  65. Sheahan, M., Barrett, C.B. and Goldvale, C. (2015) The unintended consequences of agricultural input intensification: Human health implications of agro-chemical use in Sub-Saharan Africa. Paper presented to the Structural Transformation of African Agricultural and Rural Spaces Conference, Addis Ababa, Ethiopia, 4–5 December, 2015.Google Scholar
  66. Sheahan, M. and Christopher, B. (2017) Ten striking facts about agricultural input use in Sub-Saharan Africa. Food Policy 67(February): 12–25.CrossRefGoogle Scholar
  67. Shi, G. and Pray, C.E. (2012) Modeling agricultural innovation in a rapidly developing country: The case of the Chinese pesticide industry. Agricultural Economics 43: 377–388Google Scholar
  68. Smale, M., Haider, H. and Theriault, V. (2015) Input use on major cereals as measured by the Enquête Permanente Agricole (EPA) of Burkina Faso, 2009/10 to 2011/12.Google Scholar
  69. Smart, R.D., Blum, M. and Wesseler, J. (2015) EU Member States’ voting for authorizing genetically engineered crops: A regulatory gridlock. German Journal of Agricultural Economics 64(4): 244–262.Google Scholar
  70. Smyth, S.J., Gusta, M., Belcher, K., Phillips, P.W.B., Castle, D. (2011) Environmental impacts from herbicide tolerant canola production in Western Canada. Agricultural Systems 104: 403–410.CrossRefGoogle Scholar
  71. Sondhia, S. (2014) Herbicides residues in soil, water, plants and non-targeted organisms and human health implications: An Indian perspective. Indian Journal of Weed Science 46(1): 660–685.Google Scholar
  72. Swinton, S. and Van Deynze, B. (2017) Hoes to herbicide: Economics of evolving weed management in the United States. European Journal of Development Research (this issue).Google Scholar
  73. Szmedra, P. (1994) Pesticides and Agrichemical industry in Sub-Saharan Africa. Arlington, VA: Environmental and Natural Resources Policy and Training EPAT) Project, Winrock International Environmental Alliance.Google Scholar
  74. Tamru, S. Minten, B., Bachewe, F. and Alemu, D. (2017) The rapid expansion of herbicide use in smallholder agriculture in Ethiopia: Evidence, drivers and implications. European Journal of Development Research (this issue).Google Scholar
  75. Tosun, J. and Schaub, S. (2017) Mobilization in the European Public Sphere: The Struggle Over Genetically Modified Organisms. Review of Policy Research, doi: 10.1111/ropr.12235.Google Scholar
  76. Traoré, A. and Haggblade, S. (2017) Mise en œuvre des politiques régionales sur les pesticides en Afrique de l’Ouest: Rapport de l’étude de cas en Côte d’Ivoire. Food Security Innovation Lab Discussion Paper. East Lansing: Michigan State University.Google Scholar
  77. Waterfield, G. and Zilberman, D. (2012) Pest management in food systems: An economic perspective. Annual Review of Environment and Resources 37: 223–245.CrossRefGoogle Scholar
  78. Wesseler, J., Scatasta, S. and Fall, E.H. (2011) The environmental benefits and costs of genetically modified (GM) crops. In: C. Carter, G.C. Moschini and I. Sheldon (eds.) Genetically Modified Food and Global Welfare, Bingley: Emerald Group Publishing, pp. 173–199.Google Scholar
  79. Wesseler, J. and Smart, R. (2014) Environmental impacts. Chapter 6. In: J. Falck-Zepeda, K. Ludlow, S. Smyth (eds.) Socio-economic Considerations in Biotechnology Regulation. New York: Springer, pp. 81–95.Google Scholar
  80. World Health Organization (WHO). (2015) Evaluation of Five Organophosphate Insecticides and Herbicides. Geneva: WHO International Agency for Research on Cancer.Google Scholar
  81. Xi, C. (2014) Global agrochemical market will continue to maintain steady growth. AgroPages, October 28, 2014. http://news.agropages.com/News/NewsDetail—13349.htm
  82. Yao, B.O. (2014) Assurer la qualité et l’intégrité des pesticides. USAID-CLDP/USCD Conference on Best Practices for Agencies and Farming Associations on Oversight of Agricultural Product Distribution, 17–18 June, Bamako, Mali.Google Scholar
  83. Zhang, C., Hu, R., Huang, J., Huang, X., Shi, G., Li, Y., Yin, Y. and Chen, Z. (2016) Health effect of agricultural pesticide use in China: Implications for the development of GM crops. Scientific Reports 6: 34918.CrossRefGoogle Scholar
  84. Zilberman, D., Graff, G., Hochman, G. and Kaplan, S. (2015) The Political Economy of Biotechnology. German Journal of Agricultural Economics 64(4): 212–223.Google Scholar
  85. Zilberman, D., Kaplan, S. and Wesseler, J. (2015) The loss from underutilizing GM technologies. AgBioForum 18(3): 312–319.Google Scholar
  86. Zilberman, D. and Wesseler, J. (2014) The impacts and acceptance of agricultural biotechnology: An introduction to the special issue. Environment and Development Economics 19: 669–675.CrossRefGoogle Scholar
  87. Zimdahl, R.L. (2007) Fundamentals of Weed Science. Amsterdam: Elsevier.Google Scholar
  88. Zimdahl, R.L. (2010) A History of Weed Science in the United States. Burlington, MA: Elsevier.Google Scholar

Copyright information

© European Association of Development Research and Training Institutes (EADI) 2017

Authors and Affiliations

  • Steven Haggblade
    • 1
    Email author
  • Bart Minten
    • 2
  • Carl Pray
    • 3
  • Thomas Reardon
    • 1
  • David Zilberman
    • 4
  1. 1.Agriculture, Food and Resource EconomicsMichigan State UniversityEast LansingUSA
  2. 2.International Food Policy Research InstituteWashingtonUSA
  3. 3.Agricultural, Food and Resource Economics Department, School of Environmental and Biological SciencesRutgers, The State University of New JerseyNew BrunswickUSA
  4. 4.Agricultural and Resource Economics DepartmentUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations