Journal of Marketing Analytics

, Volume 7, Issue 3, pp 196–202 | Cite as

Partial least squares structural equation modeling using SmartPLS: a software review

  • Marko SarstedtEmail author
  • Jun-Hwa Cheah
Software Review


In their effort to better understand consumer behavior, marketing researchers often analyze relationships between latent variables, measured by sets of observed variables. Partial least squares structural equation modeling (PLS-SEM) has become a popular tool for analyzing such relationships. Particularly the availability of SmartPLS, a comprehensive software program with an intuitive graphical user interface, helped popularize the method. We review the latest version of SmartPLS and discuss its various features. Our aim is to offer researchers with concrete guidance regarding their choice of a PLS-SEM software that fits their analytical needs.



  1. Becker, J.-M., A. Rai, C.M. Ringle, and F. Völckner. 2013. Discovering unobserved heterogeneity in structural equation models to avert validity threats. MIS Quarterly 37 (3): 665–694.Google Scholar
  2. Becker, J.-M., C.M. Ringle, and M. Sarstedt. 2018. Estimating moderating effects in PLS-SEM and PLSc-SEM: Interaction term generation*data treatment. Journal of Applied Structural Equation Modeling 2 (2): 1–21.Google Scholar
  3. Cepeda-Carrion, G., J.-G. Cegarra-Navarro, and V. Cillo. 2019. Tips to use partial least squares structural equation modelling (PLS-SEM) in knowledge management. Journal of Knowledge Management 23 (1): 67–89.Google Scholar
  4. Chin, W.W. 1998. The partial least squares approach to structural equation modeling. In Modern methods for business research, ed. G.A. Marcoulides, 295–336. Mahwah: Erlbaum.Google Scholar
  5. Dijkstra, T.K., and J. Henseler. 2015. Consistent partial least squares path modeling. MIS Quarterly 39 (2): 297–316.Google Scholar
  6. Eklöf, J.A., and A.H. Westlund. 2002. The pan-European customer satisfaction index programme—Current work and the way ahead. Total Quality Management 13 (8): 1099–1106.Google Scholar
  7. Franke, G.R., and M. Sarstedt. 2019. Heuristics versus statistics in discriminant validity testing: A comparison of four procedures. Internet Research 29 (3): 430–447.Google Scholar
  8. Garson, G.D. 2016. Partial least squares: Regression and structural equation models. Asheboro, NC: Statistical Associates Publishers Publications.Google Scholar
  9. Gudergan, S.P., C.M. Ringle, S. Wende, and A. Will. 2008. Confirmatory tetrad analysis in PLS path modeling. Journal of Business Research 61 (12): 1238–1249.Google Scholar
  10. Hahn, C., M.D. Johnson, A. Herrmann, and F. Huber. 2002. Capturing customer heterogeneity using a finite mixture PLS approach. Schmalenbach Business Review 54 (3): 243–269.Google Scholar
  11. Hair, J.F., C.M. Ringle, and M. Sarstedt. 2011. PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice 19 (2): 139–151.Google Scholar
  12. Hair, J., C.L. Hollingsworth, A.B. Randolph, and A.Y.L. Chong. 2017a. An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems 117 (3): 442–458.Google Scholar
  13. Hair, J.F., G.T.M. Hult, C.M. Ringle, and M. Sarstedt. 2017b. A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks, CA: Sage Publications.Google Scholar
  14. Hair, J.F., M. Sarstedt, C.M. Ringle, and S.P. Gudergan. 2018. Advanced issues in partial least squares structural equation modeling (PLS-SEM). Thousand Oaks, CA: Sage Publications.Google Scholar
  15. Hair, J.F., J.J. Risher, M. Sarstedt, and C.M. Ringle. 2019a. When to use and how to report the results of PLS-SEM. European Business Review 31 (1): 2–14.Google Scholar
  16. Hair, J.F., M. Sarstedt, and C.M. Ringle. 2019b. Rethinking some of the rethinking of partial least squares. European Journal of Marketing 53 (4): 566–584.Google Scholar
  17. Henseler, J. 2017. Partial least squares path modeling. In Advanced methods for modeling markets: International series in quantitative marketing, ed. P. Leeflang, T. Bijmolt, and K. Pauwels, 361–381. Heidelberg: Springer.Google Scholar
  18. Henseler, J., T.K. Dijkstra, M. Sarstedt, C.M. Ringle, A. Diamantopoulos, D.W. Straub, D.J. Ketchen Jr., J.F. Hair, G.T.M. Hult, and R.J. Calantone. 2014. Common beliefs and reality about PLS: Comments on Rönkkö and Evermann (2013). Organizational Research Methods 17 (2): 182–209.Google Scholar
  19. Henseler, J., C.M. Ringle, and M. Sarstedt. 2016. Testing measurement invariance of composites using partial least squares. International Marketing Review 33 (3): 405–431.Google Scholar
  20. Hult, G.T.M., J.F. Hair, D. Proksch, M. Sarstedt, A. Pinkwart, and C.M. Ringle. 2018. Addressing endogeneity in international marketing applications of partial least squares structural equation modeling. Journal of International Marketing 26 (3): 1–21.Google Scholar
  21. Hwang, H., M. Sarstedt, J. H. Cheah and C. M. Ringle. (2019). A concept analysis of methodological research on composite-based structural equation modeling: bridging PLSPM and GSCA. Behaviormetrika, forthcoming.Google Scholar
  22. Jakobowicz, E., and C. Derquenne. 2007. A modified PLS path modeling algorithm handling reflective categorical variables and a new model building strategy. Computational Statistics & Data Analysis 51 (8): 3666–3678.Google Scholar
  23. Jöreskog, K.G., and H.O.A. Wold. 1982. The ML and PLS techniques for modeling with latent variables: historical and comparative aspects. In Systems under indirect observation, part I, ed. K.G. Jöreskog and H. Wold, 263–270. Amsterdam: North-Holland.Google Scholar
  24. Khan, G.F., M. Sarstedt, W.-L. Shiau, J.F. Hair, C.M. Ringle, and M. Fritze. 2019. Methodological research on partial least squares structural equation modeling (PLS-SEM): An analysis based on social network approaches. Internet Research 29 (3): 407–429.Google Scholar
  25. Kock, N. 2019. From composites to factors: Bridging the gap between PLS and covariance-based structural equation modelling. Information Systems Journal 29 (3): 674–706.Google Scholar
  26. Kumar, D.S., and K. Purani. 2018. Model specification issues in PLS-SEM: Illustrating linear and non-linear models in hospitality services context. Journal of Hospitality and Tourism Technology 9 (3): 338–353.Google Scholar
  27. Lohmöller, J.-B. 1989. Latent variable path modeling with partial least squares. Heidelberg: Springer.Google Scholar
  28. MacKenzie, S.B., P.M. Podsakoff, and N.P. Podsakoff. 2011. Construct measurement and validation procedures in MIS and behavioral research: Integrating new and existing techniques. MIS Quarterly 35 (2): 293–334.Google Scholar
  29. Matthews, L. 2017. Applying multigroup analysis in PLS-SEM: A step-by-step process. In Partial least squares path modeling: Basic concepts, methodological issues and applications, ed. H. Latan and R. Noonan, 219–243. Heidelberg: Springer.Google Scholar
  30. Menichelli, E., T. Almøy, O. Tomic, N.V. Olsen, and T. Næs. 2014. SO-PLS as an exploratory tool for path modelling. Food Quality and Preference 36: 122–134.Google Scholar
  31. Monecke, A., and F. Leisch. 2012. semPLS: Structural equation modeling using partial least squares. Journal of Statistical Software 48 (3): 1–32.Google Scholar
  32. Ramayah, T., J. Cheah, F. Chuah, H. Ting, and M.A. Memon. 2018. Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0: An updated and practical guide to statistical analysis. Singapore: Pearson Publications.Google Scholar
  33. Rigdon, E.E., M. Sarstedt, and C.M. Ringle. 2017. On comparing results from CB-SEM and PLS-SEM. Five perspectives and five recommendations. Marketing ZFP 39 (3): 4–16.Google Scholar
  34. Ringle, C.M., and M. Sarstedt. 2016. Gain more insight from your PLS-SEM results: The importance-performance map analysis. Industrial Management & Data Systems 116 (9): 1865–1886.Google Scholar
  35. Ringle, C.M., S. Wende, and J.-M. Becker. 2015. SmartPLS 3 [software]. Bönningstedt: SmartPLS.Google Scholar
  36. Ringle, C.M., S. Wende, and A. Will. 2005. SmartPLS 2.0 (M3) Beta [software]. Bönningstedt: SmartPLS.Google Scholar
  37. Rouse, A. C. (2009). Should partial least squares be used for analysing psychological constructs? In Proceedings of the 23rd Australian and New Zealand Academy of Management Conference, pp. 1–4 December 2009, Melbourne, Australia.Google Scholar
  38. Sarstedt, M. 2019. Der knacks and a silver bullet. In The great facilitator. Reflections on the contributions of Joseph F. Hair, Jr. to marketing and business research, ed. B.J. Babin and M. Sarstedt, 155–164. Heidelberg: Springer.Google Scholar
  39. Sarstedt, M., and E.A. Mooi. 2019. A concise guide to market research: The process, data, and methods using IBM SPSS Statistics. Heidelberg: Springer.Google Scholar
  40. Sarstedt, M., J.-M. Becker, C.M. Ringle, and M. Schwaiger. 2011. Uncovering and treating unobserved heterogeneity with FIMIX-PLS: Which model selection criterion provides an appropriate number of segments? Schmalenbach Business Review 63 (1): 34–62.Google Scholar
  41. Sarstedt, M., J.F. Hair, C.M. Ringle, K.O. Thiele, and S.P. Gudergan. 2016. Estimation issues with PLS and CBSEM: Where the bias lies! Journal of Business Research 69 (10): 3998–4010.Google Scholar
  42. Sarstedt, M., C. M. Ringle, J.-H. Cheah, H. Ting, O. I. Moisescu, and L. Radomir. (2019). Structural model robustness checks in PLS-SEM. Tourism Economics, forthcoming.Google Scholar
  43. Sarstedt, M., C.M. Ringle, and J.F. Hair. 2017a. Partial least squares structural equation modeling. In Handbook of market research, ed. C. Homburg, M. Klarmann, and A. Vomberg. Heidelberg: Springer.Google Scholar
  44. Sarstedt, M., C.M. Ringle, and J.F. Hair. 2017b. Treating unobserved heterogeneity in PLS-SEM: A multi-method approach. In Partial least squares path modeling: Basic concepts, methodological issues and applications, ed. H. Latan and R. Noonan, 197–217. Heidelberg: Springer.Google Scholar
  45. Schlittgen, R., C.M. Ringle, M. Sarstedt, and J.-M. Becker. 2016. Segmentation of PLS path models by iterative reweighted regressions. Journal of Business Research 69 (10): 4583–4592.Google Scholar
  46. Schwaiger, M. 2004. Components and parameters of corporate reputation. Schmalenbach Business Review 56 (1): 46–71.Google Scholar
  47. Sharma, P. N., G. Shmueli, M. Sarstedt, N. Danks, and S. Ray. (2019). Prediction-oriented model selection in partial least squares path modeling. Decision Sciences, forthcoming.Google Scholar
  48. Shmueli, G., S. Ray, J.M. Velasquez Estrada, and S.B. Chatla. 2016. The elephant in the room: Evaluating the predictive performance of PLS models. Journal of Business Research 69 (10): 4552–4564.Google Scholar
  49. Shmueli, G., M. Sarstedt, J. F. Hair, J.-H. Cheah, H. Ting, S. Vaithilingam, and C. M. Ringle. (2019). Predictive model assessment in PLS-SEM: Guidelines for using PLSpredict. European Journal of Marketing, forthcoming.Google Scholar
  50. Streukens, S., and S. Leroi-Werelds. 2016. Bootstrapping and PLS-SEM: A step-by-step guide to get more out of your bootstrap results. European Management Journal 34 (6): 618–632.Google Scholar
  51. Tenenhaus, M., V.E. Vinzi, Y.-M. Chatelin, and C. Lauro. 2005. PLS path modeling. Computational Statistics & Data Analysis 48 (1): 159–205.Google Scholar
  52. Usakli, A., and K.G. Kucukergin. 2018. Using partial least squares structural equation modeling in hospitality and tourism: Do researchers follow practical guidelines? International Journal of Contemporary Hospitality Management 30 (11): 3462–3512.Google Scholar
  53. Venkatesh, V., M.G. Morris, G.B. Davis, and F.D. Davis. 2003. User acceptance of information technology: Toward a unified view. MIS Quarterly 27 (3): 425–478.Google Scholar
  54. Venturini, S., and M. Mehmetoglu. 2017. plssem: A stata package for structural equation modeling with partial least squares. Journal of Statistical Software 88 (8): 1–35.Google Scholar
  55. Wold, H. 1982. Soft modeling: The basic design and some extensions. In Systems under indirect observation, part II, ed. K.G. Jöreskog and H. Wold, 1–54. Amsterdam: North-Holland.Google Scholar
  56. Wold, H.O.A. 1985. Partial least squares. In Encyclopedia of Statistical Sciences, ed. S. Kotz and N.L. Johnson, 581–591. New York: Wiley.Google Scholar
  57. Wong, K.K.K. 2019. Mastering partial least squares structural equation modeling (PLS-SEM) with Smartpls in 38 hours. Bloomington: iUniverse Publishing.Google Scholar

Copyright information

© Springer Nature Limited 2019

Authors and Affiliations

  1. 1.Otto-von-Guericke University MagdeburgMagdeburgGermany
  2. 2.Monash University MalaysiaSelangorMalaysia
  3. 3.Faculty of Economics and ManagementUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations