Journal of Simulation

, Volume 1, Issue 2, pp 97–107

Bayesian methodology for dynamic modelling



We describe a Bayesian methodology for fitting deterministic dynamic models, demonstrating how this can be used to estimate the uncertainty around model outputs. By its nature, Bayesian statistics allows all available sources of information to be incorporated: prior knowledge of the model parameter values and data corresponding to the model outputs, thus allowing for a thorough analysis of the uncertainty. The methodology is demonstrated with an example: a deterministic compartmental model of tuberculosis and HIV disease. We discuss how this method might be modified to allow a similar analysis of stochastic simulation models.


Bayesian statistics disease modelling simulation 


  1. Andradóttir S and Bier VM (2000). Applying Bayesian ideas in simulation. Simulat Pract Theory 8: 253–280.CrossRefGoogle Scholar
  2. Badri M, Ehrlich R, Pulerwitz T, Wood R and Maartens G (2002). Tuberculosis should not be considered an AIDS – defining illness in areas with a high tuberculosis prevalence. Int J Tuberculosis Lung Dis 6: 231–237.Google Scholar
  3. Bronson R (1970). Matrix Methods: an Introduction. Academic Press: New York.Google Scholar
  4. Brooks SP and Gelman A (1998). General methods for monitoring convergence of iterative simulations. J Comput Graph Statist 7: 434–455.Google Scholar
  5. Chick SE (1997). Bayesian analysis for simulation input and output. In: Andradóttir S, Healy K, Whithers D and Nelson B (eds). Proceedings of the 1997 Winter Simulation Conference, IEEE, Piscataway: NJ, pp 253–260.Google Scholar
  6. Chick SE (2001). Input distribution selection for simulation experiments: accounting for input uncertainty. Opns Res 49: 744–758.CrossRefGoogle Scholar
  7. Chick SE, Soorapanth S and Koopman JS (2003). Inferring infection transmission parameters that influence water treatment decisions. Mngt Sci 49: 920–935.CrossRefGoogle Scholar
  8. Corbett EL et al (2003). The growing burden of tuberculosis: global trends and interactions. Arch Int Med 163: 1009–1021.CrossRefGoogle Scholar
  9. Currie CSM, Williams BG, Cheng RCH and Dye C (2003). Tuberculosis epidemics driven by HIV: is prevention better than cure? AIDS 17: 2501–2508.CrossRefGoogle Scholar
  10. Currie CSM, Floyd K, Williams BG and Dye C (2005). Cost, affordability and cost-effectiveness of strategies to control tuberculosis in countries with high HIV prevalence. BMC Public Health 5: 130.CrossRefGoogle Scholar
  11. Fox-Rushby JA and Hanson K (2001). Calculating and presenting disability adjusted life years (DALYs) in cost-effectiveness analysis. Health Policy Plan 16: 326–331.CrossRefGoogle Scholar
  12. Garthwaite PH, Kadane JB and O'Hagan A (2005). Statistical methods for eliciting probability distributions. Journal of the American Statistical Association 100: 680–700.CrossRefGoogle Scholar
  13. Gelman A (1996). Inference and monitoring convergence. In: Gilks WR, Richardson S and Spiegelhalter DJ (eds). Markov Chain Monte Carlo in Practice. Chapman & Hall: London.Google Scholar
  14. Geyer CJ (1992). Practical Markov Chain Monte Carlo. Statist Sci 7: 473–483.CrossRefGoogle Scholar
  15. Gilks WR, Richardson S and Spiegelhalter DJ (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall: London.Google Scholar
  16. Hastings WK (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97–109.CrossRefGoogle Scholar
  17. Inoue K and Chick SE (1998). Comparison of Bayesian and frequentist assessments of uncertainty for selecting the best system. In: Medeiros DJ, Warren EF, Carson JS and Manivannan MS (eds). Proceedings of the 1998 Winter Simulation Conference, IEEE, Piscataway: NJ, pp 727–734.CrossRefGoogle Scholar
  18. Kraan B and Bedford T (2005). Probabilistic inversion of expert judgments in the quantification of model uncertainty. Mngt Sci 51: 995–1006.CrossRefGoogle Scholar
  19. Law AM and Kelton WD (2000). Simulation Modeling and Analysis. McGraw Hill: New York.Google Scholar
  20. Lee PM (2004). Bayesian Statistics: An Introduction. Hodder Arnold: London.Google Scholar
  21. Metropolis N et al (1953). Equations of state calculations by fast computing machine. J Chem Phys 21: 1087–1091.CrossRefGoogle Scholar
  22. Morgan D, Maher C, Mayanja B and Whitworth JAG (2002). Progression to symptomatic disease with people infected with HIV-1 in rural Uganda: prospective cohort study. BMJ 324: 193–197.CrossRefGoogle Scholar
  23. Nelder JA and Mead R (1965). A simplex method for function minimization. Comput J 7: 308–313.CrossRefGoogle Scholar
  24. Nelson BL, Schmeiser BW, Taaffe MR and Wang J (1997). Approximation-assisted point estimation. Opns Res Lett 20: 109–118.CrossRefGoogle Scholar
  25. Oakley JE and O'Hagan A (2002). Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika 89: 769–784.CrossRefGoogle Scholar
  26. O'Hagan A and Oakley JE (2004). Probability is perfect, but we can't elicit it perfectly. Reliab Eng Syst Safety 85: 239–248.CrossRefGoogle Scholar
  27. Percy DF (2002). Bayesian enhanced strategic decision making for reliability. Eur J Opnl Res 139: 133–145.CrossRefGoogle Scholar
  28. Salomon JA and Murray CL (2001). Modelling HIV/AIDS epidemics in Sub-Saharan Africa using seroprevalence data from antenatal clinics. Bull World Health Organ 79: 596–607.Google Scholar
  29. Wiper MP, Pettit LI and Young KDS (2000). Bayesian inference for a Lanchester type combat model. Naval Res Logist 47: 541–558.CrossRefGoogle Scholar
  30. World Health Organization (1999). World Health Report. Geneva.Google Scholar
  31. World Health Organization (2002). Global tuberculosis control: surveillance, planning, financing. WHO Report, Geneva.Google Scholar

Copyright information

© Palgrave Macmillan Ltd 2007

Authors and Affiliations

  1. 1.School of Mathematics, University of SouthamptonSouthamptonUK

Personalised recommendations