Journal of the Operational Research Society

, Volume 56, Issue 2, pp 222–233 | Cite as

Use of discrete-event simulation to evaluate strategies for the prevention of mother-to-child transmission of HIV in developing countries

Special Features

Abstract

HIV/AIDS affects over 40 million people worldwide, and more than 70% of these people live in Africa. Mother-to-child transmission of HIV accounts for over 90% of all HIV infections in children under the age of 15 years. However, implementing HIV prevention policies in Africa is extremely difficult because of the poor medical and socio-economic infrastructure. In this paper, we present a discrete-event simulation model that evaluates the relative benefits of two potentially affordable interventions aimed at preventing mother-to-child transmission of HIV, namely anti-retroviral treatment at childbirth and/or bottlefeeding strategies. The model uses rural Tanzanian data and compares different treatment policies. Our results demonstrate that strategic guidelines about breastfeeding are highly dependent on the assumed increase in infant mortality due to bottlefeeding, the efficacy of anti-retroviral treatment at childbirth, and the maternal health stage. The cost of averted infections, though low by Western standards, may represent significant obstacles to policy implementation in developing countries.

Keywords

vertical HIV/AIDS transmission discrete event simulation cost-effectiveness analysis epidemic policy model decision-support-system 

References

  1. Joint United Nations Programme on HIV/AIDS (2003). AIDS Epidemic Update: December 2003. World Health Organization: Geneva.Google Scholar
  2. Dop MC (2002). Breastfeeding in Africa: will positive trends be challenged by the AIDS epidemic? Sante 12: 64–72.Google Scholar
  3. Coutsoudis A, Goga AE, Rollins N and Coovadia HM (2002). Free formula milk for infants of HIV-infected women: blessing or curse? Health Policy Plan 17: 154–160.CrossRefGoogle Scholar
  4. WHO Collaborative Study Team on the Role of Breastfeeding on the Prevention of Infant Mortality (2000). Effect of breastfeeding on infant and child mortality due to infectious diseases in less developed countries: a pooled analysis. Lancet 355: 451–455.Google Scholar
  5. Rosen S et al (2003). AIDS is your business. Harvard Bus Rev 81: 80–87.Google Scholar
  6. Flessa S (2002). Gesundheitsreformen in Entwicklungslaendern: eine kritische Analyse aus Sicht der kirchlichen Entwicklungshilfe. Lembeck: Frankfurt am Main.Google Scholar
  7. Mansergh G et al (1996). Cost-effectiveness of short-course zidovudine to prevent perinatal HIV type 1 infection in a sub-Saharan African developing country setting. JAMA 276: 139–145.CrossRefGoogle Scholar
  8. Wilkinson D, Floyd K and Gilks CF (1998). Antiretroviral drugs as a public health intervention for pregnant HIV-infected women in rural South Africa: an issue of cost-effectiveness and capacity. AIDS 12: 1675–1682.CrossRefGoogle Scholar
  9. Marseille E, Kahn JG and Saba J (1998). Cost-effectiveness of antiviral drug therapy to reduce mother-to-child HIV transmission in sub-Saharan Africa. AIDS 12: 939–948.CrossRefGoogle Scholar
  10. Marseille E et al (1999). Cost effectiveness of single-dose nevirapine regimen for mothers and babies to decrease vertical HIV-1 transmission in sub-Saharan Africa. Lancet 354: 803–809.CrossRefGoogle Scholar
  11. UNICEF, UNAIDS, WHO/HTP and MSF (2001). Sources and Prices of Selected Drugs and Diagnostics for People Living with HIV/AIDS. WHO: Geneva, Switzerland.Google Scholar
  12. Skordis J and Nattrass N (2002). Paying to waste lives: the affordability of reducing mother-to-child transmission of HIV in South Africa. J Health Econ 21: 405–421.CrossRefGoogle Scholar
  13. Stringer JS et al (2003). Comparison of two strategies for administering nevirapine to prevent perinatal HIV transmission in high-prevalence, resource-poor settings. J Acquir Immune Defic Syndr 32: 506–513.CrossRefGoogle Scholar
  14. Wood E et al (2000). Extent to which low-level use of antiretroviral treatment could curb the AIDS epidemic in sub-Saharan Africa. Lancet 355: 2095–2100.CrossRefGoogle Scholar
  15. Jacquez JA (1997). Mother-to-child transmission of HIV-1. J Acquir Immune Defic Syndr Hum Retrovirol 16: 284–292.CrossRefGoogle Scholar
  16. Wilkinson D, Floyd K and Gilks CF (2000). National and provincial estimated costs and cost effectiveness of a programme to reduce mother-to-child HIV transmission in South Africa. S Afr Med J 90: 794–798.Google Scholar
  17. Söderlund N, Zwi K, Kinghorn A and Gray G (1999). Prevention of vertical transmission of HIV: analysis of cost effectiveness of options available in South Africa. BMJ 318: 1650–1656.CrossRefGoogle Scholar
  18. Vieira I, Harper P, Shahani A and de Senna V (2003). Mother-to-child transmission of HIV: a simulation-based approach for the evaluation of intervention strategies. J Opl Res Soc 54: 713–722.CrossRefGoogle Scholar
  19. Rauner MS and Brandeau ML (2001). AIDS policy modeling for the 21st century: an overview of key issues. Health Care Mngt Sci 4: 165–180.CrossRefGoogle Scholar
  20. Heidenberger K and Roth M (1998). Taxonomies in the strategic management of health technologies: the case of multiperiod compartmental HIV/AIDS policy models. Int J Techn Mngt 15: 336–358.Google Scholar
  21. Davies R, O'Keefe RM and Davies HTO (1993). Simplifying the modeling of multiple activities, multiple queuing and interruptions: a new low-level data structure. ACM T Model Comput Sim 3: 332–346.CrossRefGoogle Scholar
  22. Davies R and Davies HTO (1994). Modelling patients flows and resource provision in health systems. Omega 22: 123–131.CrossRefGoogle Scholar
  23. Davies R et al (2000). Using simulation modeling for evaluating screening services for diabetic retinopathy. J Opl Res Soc 51: 476–484.CrossRefGoogle Scholar
  24. Cooper K et al (2002). The development of a simulation model of the treatment of coronary heart disease. Health Care Mngt Sci 5: 259–267.CrossRefGoogle Scholar
  25. Flessa S (2003). Decision support for AIDS control programmes in Eastern Africa. OR-Spectrum 25: 265–291.CrossRefGoogle Scholar
  26. Heidenberger K and Flessa S (1993). A system dynamics model for AIDS policy support in Tanzania. Eur J Opl Res 70: 167–176.CrossRefGoogle Scholar
  27. Dubey SF (1967). Some percentile estimators for Weibull parameters. Technometrics 9: 119–129.CrossRefGoogle Scholar
  28. Auger I et al (1988). Incubation periods for paediatric AIDS patients. Nature 336: 575–577.CrossRefGoogle Scholar
  29. Hethcote HW and Van Ark JW (1992). Modeling HIV Transmission and AIDS in the United States. Springer: Berlin, Germany.CrossRefGoogle Scholar
  30. Mwau M and McMichael AJ (2003). A review of vaccines for HIV prevention. J Gene Med 5: 3–10.CrossRefGoogle Scholar
  31. Rauner MS (2002). Resource allocation for HIV/AIDS control programs: a model-based policy analysis. OR-Spectrum 24: 99–124.CrossRefGoogle Scholar
  32. Rauner MS (2002). Using simulation for AIDS policy modeling: benefits for HIV/AIDS prevention policy makers in Vienna, Austria. Health Care Mngt Sci 5: 121–134.CrossRefGoogle Scholar
  33. Rauner MS (1999). Strategisches Management von Praeventivprogrammen, Ein umfassendes Entscheidungsunterstuetzungssystem fuer die AIDS-Epidemie. Peter Lang: Frankfurt am Main, Germany.Google Scholar
  34. Gold MR, Siegel JE, Russell LB and Weinstein MC (eds) (1996). Cost-effectiveness in Health and Medicine. Oxford University Press: New York, NY.Google Scholar
  35. United Republic of Tanzania (1988). 1988 Population Census: Preliminary Report. Ministry of Home Affairs: Dar-es-Salaam, Tanzania.Google Scholar
  36. United Republic of Tanzania (1992). Women and Men in Tanzania. Ministry of Community Development, Women and Children: Dar-es-Salaam, Tanzania.Google Scholar
  37. Flessa S (1997). Costing of Health Services of the Evangelical-Lutheran Church in Tanzania. Evangelical-Lutheran Church in Tanzania: Arusha, Tanzania.Google Scholar
  38. Flessa S (1998). Many world of health: a simulation of the determinants of the epidemiological transition. Z Bevoelkerungswiss 23: 459–494.Google Scholar
  39. Staewen C (1991). Kulturelle und psychologische Bedingungen der Zusammenarbeit mit Afrikanern. Weltforum Verlag: Muenchen, Cologne, London.Google Scholar
  40. Flessa S (2002). Malaria und AIDS. Gesundheitsoekonomische Analysen auf Grundlage von Disease Dynamics Modellen. Hans Jacobs: Lage, Germany.Google Scholar
  41. Flessa S (1999). Decision support for malaria-control programmes—a system dynamics model. Health Care Mngt Sci 2: 181–191.CrossRefGoogle Scholar
  42. United Republic of Tanzania (1999). Health Statistics Abstract 1999. Ministry of Health: Dar-es-Salaam, Tanzania.Google Scholar
  43. United Republic of Tanzania (1997). National AIDS Control Programme, HIV/AIDS/STD Surveillance. Surveillance Report No. 12. Ministry of Health: Dar-es-Salaam, Tanzania.Google Scholar
  44. World Bank (1992). Tanzania: AIDS Assessment and Planning Study. World Bank: Washington, DC.Google Scholar
  45. Guay LA et al (1999). Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: HIVNET 012 randomised trial. Lancet 354: 795–802.CrossRefGoogle Scholar
  46. De Cock KM et al (2000). Prevention of mother-to-child HIV transmission in resource-poor countries: translating research into policy and practice. JAMA 283: 1175–1182.CrossRefGoogle Scholar
  47. Moodley D et al (2003). A multicenter randomized controlled trial of nevirapine versus a combination of zidovudine and lamivudine to reduce intrapartum and early postpartum mother-to-child transmission of human immunodeficiency virus type 1. J Infect Dis 187: 725–735.CrossRefGoogle Scholar
  48. Brailsford SC, Shahani AK, Basu R and Sivapalan S (1996). Practical models for the care of HIV and AIDS patients. Int J STD AIDS 7: 91–97.CrossRefGoogle Scholar
  49. Graham JD et al (1998). Evaluating the cost-effectiveness of clinical and public health measures. Annu Rev Public Health 19: 125–152.CrossRefGoogle Scholar
  50. UP/UNDP (2003). Human Development Report 2003. Millenium Development Goals. Geneva: Oxford.Google Scholar
  51. Nduati R et al (2001). Effect of breastfeeding on mortality among HIV-1 infected women: a randomised trial. Lancet 357: 1651–1655.CrossRefGoogle Scholar
  52. Newell M (2001). Does breastfeeding really affect mortality among HIV-1 infected women? Lancet 357: 1634–1635.CrossRefGoogle Scholar
  53. Marseille E, Hofmann PB and Kahn JG (2002). HIV prevention before HAART in sub-Saharan Africa. Lancet 359: 1851–1856.CrossRefGoogle Scholar
  54. Owens DK (1998). Interpretation of cost-effectiveness analyses. J Gen Intern Med 13: 716–717.CrossRefGoogle Scholar
  55. Longini Jr IM, Hudgens MG, Halloran ME and Sagatelian K (1999). A Markov model for measuring vaccine efficacy for both susceptibility to infection and reduction in infectiousness for prophylactic HIV vaccines. Stat Med 18: 53–68.CrossRefGoogle Scholar
  56. Edwards DM, Shachter RD and Owens DK (1998). A dynamic HIV-transmission model for evaluating the costs and benefits of vaccine programs. Interfaces 28(3): 144–166.CrossRefGoogle Scholar
  57. Bogard E and Kuntz KM (2002). The impact of a partially effective HIV vaccine on a population of intravenous drug users in Bangkok, Thailand: a dynamic model. J Acquir Immune Defic Syndr 29: 132–141.CrossRefGoogle Scholar
  58. Porco TC and Blower SM (1998). Designing HIV vaccination policies: subtypes and cross-immunity. Interfaces 28(3): 167–190.CrossRefGoogle Scholar

Copyright information

© Palgrave Macmillan Ltd 2004

Authors and Affiliations

  1. 1.University of ViennaViennaAustria
  2. 2.University of SouthamptonSouthamptonUK
  3. 3.University of HeidelbergHeidelbergGermany

Personalised recommendations