Knowledge Management Research & Practice

, Volume 10, Issue 2, pp 188–199 | Cite as

A framework for ontology-based temporal modelling of business intelligence

  • Alexander Mikroyannidis
  • Babis Theodoulidis


Ontologies provide the means for supporting business intelligence (BI) and information management through the interpretation of unstructured content. On the basis of the semantics of ontologies, information can be extracted from natural language texts, and on a further level of processing knowledge that facilitates BI can be discovered. However, in order to act this way, ontologies need to be properly modelled and evolved so that they are constantly aligned with changes that occur in the real world. This paper presents a framework for modelling the temporal aspects of a semantic knowledge base with direct impact on the BI process.


ontology business intelligence information management ontology evolution 



The authors would like to thank the CEO of Biovista, Dr. Andreas Persidis, for providing the case study and its supporting material, including requirements, data sets, and helpful feedback on the paper.


  1. Ait-Braham A, Theodoulidis B and Karvelis G (1994) Conceptual modelling and manipulation of temporal databases. In 13th International Conference on the Entity Relationship Approach (ER ‘94) (Loucopoulos P, Ed), pp 296–313, Springer LNCS, Manchester, UK.Google Scholar
  2. Aleksovski Z, Klein M, Katen WT and Harmelen FV (2006) Matching unstructured vocabularies using a background ontology. In International Conference on Knowledge Engineering and Knowledge Management (EKAW’06) (Staab S and Svatek V, Eds), pp 182–197, Springer-Verlag, Podebrady, Czech Republic.Google Scholar
  3. Allen JF (1983) Maintaining knowledge about temporal intervals. Communications of the ACM 26 (11), 832–843.CrossRefGoogle Scholar
  4. Bechhofer S, Harmelen FV, Hendler J, Horrocks I, McGuinness DL, Patel-Schneider PF and Stein LA (2004) OWL web ontology language reference. In W3C Recommendation (Dean M and Schreiber G, Eds), World Wide Web Consortium [WWW document]
  5. Bertino E, Ferrari E and Guerrini G (1996) A formal temporal object-oriented data model. In 5th International Conference on Extending Database Technology (EDBT) (Apers PMG, Bouzeghoub M and Gardarin G, Eds), pp 342–356, Springer LNCS, Avignon, France.Google Scholar
  6. Bertino E, Ferrari E, Guerrini G and Merlo I (1998) Extending the ODMG object model with time. In 12th European Conference on Object-Oriented Programming (ECCOP ‘98) (Jul E, Ed), pp 41–66, Springer LNCS, Brussels, Belgium.Google Scholar
  7. Cattell RGG and Atwood T (Eds) (1996) The Object Database Standard: Odmg-93: Release 1.2. Morgan Kaufmann Publications, San Francisco.Google Scholar
  8. Doan A, Madhavan J, Domingos P and Halevy A (2004) Ontology matching: a machine learning approach. In Handbook on Ontologies in Information Systems (Staab S and Studer R, Eds), pp 385–404, Springer-Verlag, New York.Google Scholar
  9. Ehrig M and Sure Y (2004) Ontology mapping – an integrated approach. In 1st European Semantic Web Symposium (Bussler C, Davies J, Fensel D and Studer R, Eds), pp 76–91, Springer LNCS, Heraklion, Greece.Google Scholar
  10. Elmasri R and Navathe SH (1989) Fundamentals of Database Systems, 1st edn, Benjamin/Cummings, Redwood City, CA.Google Scholar
  11. Elmasri R, Wuu G and Kouramajian V (1993) A temporal model and query language for EER databases. In Temporal Databases: Theory, Design, and Implementation (Tansel AU, Clifford J, Gadia S, Jajodia S, Segev A and Snodgrass RT, Eds), pp 212–229, Benjamin/Cummings, Redwood City, CA.Google Scholar
  12. Fellbaum C (1998) WordNet: An Electronic Lexical Database. The MIT Press, Cambridge, MA.Google Scholar
  13. Gadia SK and Yeung CS (1988) A generalized model for a relational temporal database. In ACM SIGMOD Conference (Haas LM and Tiwary A, Eds), pp 251–259, ACM Press, Chicago, IL.Google Scholar
  14. Goralwalla I and Özsu MT (1993) Temporal extensions to a uniform behavioral object model. In 12th International Confernce on Entity-Relationship Approach (ER’93) (Elmasri R, Kouramajian V and Thalheim B, Eds), pp 115–127, Springer LNCS, Dallas, TX.Google Scholar
  15. Guerrini G, Bertino E and Bal R (1994) A formal definition of the chimera object-oriented data model. Technical report ESPRIT Project 6333.Google Scholar
  16. Käfer W and Schöning H (1992a) Mapping a version model to a complex-object data model. In 8th International Conference on Data Engineering (ICDE) (Golshani F, Ed), pp 348–357, IEEE Computer Society, Tempe, AZ.Google Scholar
  17. Käfer W and Schöning H (1992b) Realising a temporal complex-object data model. In ACM SIGMOD International Conference on Management of Data (Stonebraker M, Ed), pp 266–275, IEEE Computer Society, San Diego, CA.Google Scholar
  18. Kakoudakis I (1996) The TAU temporal object model. MPhil Thesis, UMIST, Manchester, UK.Google Scholar
  19. Kakoudakis I and Theodoulidis B (1999) TAU: Towards a temporal object-oriented DBMS. In 9th International Database Conference (IDC) (Fong J, Ed), City University of Hong Kong Press, Hong Kong.Google Scholar
  20. Kalfoglou Y and Schorlemmer M (2003) IF-Map: an ontology mapping method based on information flow theory. Journal on Data Semantics 1 (1), 98–127.Google Scholar
  21. Klein M, Ding Y, Fensel D and Omelayenko B (2002) Ontology management: storing, aligning and maintaining ontologies. In Towards the Semantic Web: Ontology-Driven Knowledge Management (Davies J, Fensel D and Harmelen VF, Eds), pp 47–70, John Wiley and Sons Ltd, New York.Google Scholar
  22. Knublauch H (2004) Ontology-driven software development in the context of the semantic web: an example scenario with Protégé/OWL. In 1st International Workshop on the Model-Driven Semantic Web (MDSW2004) (Frankel DS, Kendall EF and McGuinness DL, Eds), Monterey, California, USA. [WWW document]
  23. Maedche A, Motik B, Silva N and Volz R (2002) MAFRA – A MApping FRAmework for distributed ontologies. In 13th European Conference on Knowledge Engineering and Knowledge Management (EKAW-2002) (Gámez-Pérez A and Richard Benjamins V, Eds), pp 235–250, Springer LNCS, Madrid, Spain.Google Scholar
  24. McGuinness DL, Fikes R, Rice J and Wilder S (2000) The chimaera ontology environment. In 17th National Conference on Artificial Intelligence (AAAI 2000) (Kautz H and Porter B, Eds), pp 1123–1124, AAAI Press/The MIT Press, Austin, TX.Google Scholar
  25. Mikroyannidis A (2007) Heraclitus II: a framework for ontology management and evolution. PhD Thesis, Manchester Business School, University of Manchester, Manchester.Google Scholar
  26. Mikroyannidis A and Theodoulidis B (2006) Heraclitus II: a framework for ontology management and evolution. In 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006) (Nishida T, Shi Z, Visser U, Wu X, Liu J, Wah B, Cheung W and Cheung Y-M, Eds), pp 514–521, IEEE Computer Society, Hong Kong, China.Google Scholar
  27. Mikroyannidis A and Theodoulidis B (2007) Heraclitus: a framework for semantic web adaptation. IEEE Internet Computing 11 (3), 45–52.CrossRefGoogle Scholar
  28. Mikroyannidis A, Theodoulidis B and Persidis A (2006) PARMENIDES: towards business intelligence discovery from web data. In 2006 IEEE /WIC/ACM International Conference on Web Intelligence (WI 2006) (Nishida T, Shi Z, Visser U, Wu X, Liu J, Wah B, Cheung W and Cheung Y-M, Eds), pp 1057–1060, IEEE Computer Society, Hong Kong, China.Google Scholar
  29. Mitra P, Wiederhold G and Decker S (2001) A scalable framework for interoperation of information sources. In 1st International Semantic Web Working Symposium (SWWS’01) (Cruz IF, Decker S, Euzenat J and McGuinness DL, Eds), pp 317–329, Stanford University, Stanford, CA.Google Scholar
  30. Mitschang B (1988) Towards a unified view of design data and knowledge representation. In 2nd Int’l Conf. on Expert Database Systems (Kerschberg L, Ed), pp 133–159, Benjamin Cummings, Vienna, VA.Google Scholar
  31. Noy N and Musen M (2003) The PROMPT suite: interactive tools for ontology merging and mapping. Technical report, SMI, Stanford University, CA, USA. [WWW document]
  32. Özsu MT, Peters RJ, Szafron D, Irani B, Lipka A and Munoz A (1995) TIGUKAT: a uniform behavioral objectbase management system. VLDB Journal: Very Large Data Bases 4 (3), 445–492.CrossRefGoogle Scholar
  33. Pelekis N, Theodoulidis B, Kopanakis I and Theodoridis Y (2004) Literature review of spatio-temporal database models. The Knowledge Engineering Review 19 (3), 235–274.CrossRefGoogle Scholar
  34. Schimmoller BK (2001) Getting connected: leveraging the power of IT. Power Engineering 105 (1), 44–47.Google Scholar
  35. Schreiber G (2000) Knowledge Engineering and Management: The CommonKADS Methodology. MIT Press, Cambridge, MA.Google Scholar
  36. Schreiber G, Wielinga B, De Hoog R, Akkermans H and Van De Velde W (1994) CommonKADS: a comprehensive methodology for KBS development. IEEE Expert 9 (6), 28–37.CrossRefGoogle Scholar
  37. Snodgrass R and Ahn I (1985) A taxonomy of time in databases. In ACM SIGMOD International Conference on the Management of Data (Navathe SB, Ed.), pp 236–246, ACM Press, Austin, TX.Google Scholar
  38. Su SYW and Chen HH (1993) Modeling and management of temporal data in object-oriented knowledge bases. Workshop on an Infrastructure for Temporal Databases, Arlington, TX.Google Scholar
  39. Su SYW and Chen HM (1991) A temporal knowledge representation model OSAM*/T and its query language OQL/T. In 17th International Conference on Very Large Data Bases (VLDB) (Lohman GM, Sernadas A and Camps R, Eds), pp 431–442, Morgan Kaufmann, Barcelona, Spain.Google Scholar
  40. Su SYW, Lam H and Krishnamurthy V (1989) An Object-Oriented Semantic Association Model (OSAM*). In Artificial Intelligence: Manufacturing Theory and Practice (Kumara ST, Soyster AL and Kashyap RL, Eds), pp 463–494, Industrial Engineering and Management Press, Norcross, GA.Google Scholar
  41. The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nature Genetics 25 (1), 25–29.Google Scholar
  42. Theodoulidis B, Ait-Braham A and Karvelis G (1994) The ORES temporal DBMS and the ERT-SQL query language. In 5th International Conference on Database and Expert Systems Applications (DEXA) (Karagiannis D, Ed), pp 270–279, Springer-Verlag, Athens, Greece.CrossRefGoogle Scholar
  43. W3C (2004a) OWL web ontology language guide. In W3C Recommendation (Smith MK, Welty C and McGuinness DL, Eds), World Wide Web Consortium. [WWW document]
  44. W3C (2004b) OWL web ontology language overview. In W3C Recommendation (McGuinness DL and Harmelen FV, Eds), World Wide Web Consortium [WWW document]

Copyright information

© Operational Research Society 2012

Authors and Affiliations

  • Alexander Mikroyannidis
    • 1
  • Babis Theodoulidis
    • 2
  1. 1.Knowledge Media Institute, The Open UniversityMilton KeynesU.K.
  2. 2.Manchester Business School, University of ManchesterManchesterU.K.

Personalised recommendations