Journal of the Operational Research Society

, Volume 64, Issue 1, pp 114–124 | Cite as

A specialized column generation approach for a vehicle routing problem with demand allocation

General Paper


Motivated by logistical operations for a food bank, this paper addresses a class of vehicle routing problems with demand allocation considerations over a network of partner agencies locations and candidate delivery sites. Any delivery tour starts at a central depot operated by the food bank and selected delivery sites are sequentially visited in order to supply goods to a set of partner agencies who travel from their respective locations to their assigned delivery sites. The problem is modelled as a mixed-integer programme with the objective of minimizing a weighted average of the distances travelled by delivery vehicles and partner agencies, and is tackled via two heuristics. First, a relax-and-fix heuristic is presented for the proposed model and is computationally enhanced using two symmetry-defeating strategies. Second, the problem is reformulated as a set partitioning model with side packing constraints that prompts a specialized column generation approach. Computational experience is provided using realistic data instances to demonstrate the usefulness of the proposed heuristics and the importance of integrated solution techniques for this class of problems.


distribution networks location and vehicle routing symmetry-defeating constraints column generation relax-and-fix 



This work has been supported by the University of Massachusetts, Amherst Faculty Research Grant/Healey Endowment Grant Award Number P1FRG0000000055.


  1. Beasley JE and Nascimento EM (1996). The vehicle routing-allocation problem: A unifying framework. TOP 4 (1): 65–86.CrossRefGoogle Scholar
  2. Bodin LD, Golden BL, Assad A and Ball M (1983). Routing and scheduling of vehicles and crews: The state of the art. Computers & Operations Research 10 (2): 63–211.CrossRefGoogle Scholar
  3. Cordeau J-F, Gendreau M, Laporte G, Potvin J-Y and Semet F (2002). A guide to vehicle routing heuristics. Journal of the Operational Research Society 53 (5): 512–522.CrossRefGoogle Scholar
  4. Daskin MS (2008). What you should know about location modeling. Naval Research Logistics 55 (4): 283–294.CrossRefGoogle Scholar
  5. Desaulniers G (2007). Managing large fixed costs in vehicle routing and crew scheduling problems solved by column generation. Computers & Operations Research 34 (4): 1221–1239.CrossRefGoogle Scholar
  6. Desaulniers G, Desrosiers J and Solomon MM (2005). Column Generation. Springer: New York.CrossRefGoogle Scholar
  7. Feillet D, Dejax P and Gendreau M (2005). Traveling salesman problems with profits. Transportation Science 39 (2): 188–205.CrossRefGoogle Scholar
  8. Ghoniem A and Sherali HD (2009). Complementary column generation and bounding approaches for set partitioning formulations. Optimization Letters 3 (1): 123–136.CrossRefGoogle Scholar
  9. Ghoniem A and Sherali HD (2010). Models and algorithms for the scheduling of a doubles tennis training tournament. Journal of the Operational Research Society 61 (5): 723–731.CrossRefGoogle Scholar
  10. Jans R (2009). Solving lot-sizing problems on parallel identical machines using symmetry-breaking constraints. INFORMS Journal on Computing 21 (1): 123–136.CrossRefGoogle Scholar
  11. Labbé M and Laporte G (1986). Maximizing user convenience and postal service efficiency in post box location. Belgian Journal of Operations Research, Statistics, and Computer Science 26 (2): 24–33.Google Scholar
  12. Labbé M, Laporte G, Martin IR and Gonzalez JJS (2005). Locating median cycles in networks. European Journal of Operational Research 160 (2): 457–470.CrossRefGoogle Scholar
  13. Laporte G (1988). Location-routing problems. In: Golden BL and Assad AA (eds). Vehicle Routing: Methods and Studies. North-Holland: Amsterdam, the Netherlands, pp. 163–197.Google Scholar
  14. Laporte G (1992). The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research 59 (3): 345–358.CrossRefGoogle Scholar
  15. Min H, Jayaraman V and Srisvatava R (1998). Combined location-routing problems: A synthesis and future research directions. European Journal of Operational Research 108 (l): 1–15.CrossRefGoogle Scholar
  16. Murty K and Djang P (1999). The US army national guard's mobile training simulators location and routing problem. Operations Research 47 (2): 175–182.CrossRefGoogle Scholar
  17. Nagy G and Salhi S (2007). Location-routing: Issues, models and methods. European Journal of Operational Research 177 (2): 649–672.CrossRefGoogle Scholar
  18. Nambiar JM, Gelders LF and Van Wassenhove LN (1981). A large scale location-allocation problem in the natural rubber industry. European Journal of Operational Research 6 (2): 183–189.CrossRefGoogle Scholar
  19. Nambiar JM, Gelders LF and Van Wassenhove LN (1989). Plant location and vehicle routing in the Malaysian rubber smallholder sector: A case study. European Journal of Operational Research 381 (1): 14–26.CrossRefGoogle Scholar
  20. Nord M, Andrews M and Carlson S (2009). Household food security in the United States, 2008. USDA Economic Research Report No. ERR-83.Google Scholar
  21. Owen SH and Daskin MS (1998). Strategic facility location: A review. European Journal of Operational Research 111 (3): 423–447.CrossRefGoogle Scholar
  22. Revelle CS and Eiselt HA (2005). Location analysis: A synthesis and survey. European Journal of Operational Research 165 (1): 1–19.CrossRefGoogle Scholar
  23. Sherali HD and Ghoniem A (2009). Joint vehicle assembly-routing problems: An integrated modeling and optimization approach. Networks 53 (3): 249–265.CrossRefGoogle Scholar
  24. Sherali HD and Smith JC (2001). Improving discrete model representations via symmetry considerations. Management Science 47 (10): 1396–1407.CrossRefGoogle Scholar
  25. Sherali HD, Fraticelli BMP and Meller RD (2003). Enhanced model formulations for optimal facility layout. Operations Research 51 (4): 629–644.CrossRefGoogle Scholar
  26. Toth P and Vigo D (eds.) (2002). An overview of vehicle routing problems. In: The Vehicle Routing Problem. Society for Industrial and Applied Mathematics: Philadelphia, pp. 1–26.CrossRefGoogle Scholar
  27. Wen M, Larsen J, Clausen J, Cordeau J-F and Laporte G (2009). Vehicle routing with cross-docking. Journal of the Operational Research Society 60 (12): 1708–1718.CrossRefGoogle Scholar
  28. Wolsey LA (1998). Integer Programming. John Wiley and Sons: New York, NY.Google Scholar

Copyright information

© Operational Research Society 2012

Authors and Affiliations

  1. 1.University of MassachusettsAmherstUSA
  2. 2.Southern Polytechnic State UniversityMariettaUSA

Personalised recommendations