Journal of the Operational Research Society

, Volume 63, Issue 2, pp 183–200 | Cite as

Generating unconstrained two-dimensional non-guillotine cutting patterns by a Recursive Partitioning Algorithm

General Paper

Abstract

In this study, a dynamic programming approach to deal with the unconstrained two-dimensional non-guillotine cutting problem is presented. The method extends the recently introduced recursive partitioning approach for the manufacturer's pallet loading problem. The approach involves two phases and uses bounds based on unconstrained two-staged and non-staged guillotine cutting. The method is able to find the optimal cutting pattern of a large number of pro blem instances of moderate sizes known in the literature and a counterexample for which the approach fails to find known optimal solutions was not found. For the instances that the required computer runtime is excessive, the approach is combined with simple heuristics to reduce its running time. Detailed numerical experiments show the reliability of the method.

Keywords

cutting and packing two-dimensional non-guillotine cutting pattern dynamic programming recursive approach distributor's pallet loading problem 

References

  1. Alvarez-Valdés R, Parajón A and Tamarit JM (2002). A tabu search algorithm for large-scale guillotine (un)constrained two-dimensional cutting problems. Comput Opns Res 29: 925–947.CrossRefGoogle Scholar
  2. Alvarez-Valdés R, Parreño F and Tamarit JM (2007). A tabu search algorithm for a two-dimensional non-guillotine cutting problem. Eur J Opl Res 183: 1167–1182.CrossRefGoogle Scholar
  3. Arenales M and Morabito R (1995). An AND/OR-graph approach to the solution of two-dimensional non-guillotine cutting problems. Eur J Opl Res 84: 599–617.CrossRefGoogle Scholar
  4. Baldacci R and Boschetti MA (2007). A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem. Eur J Opl Res 183: 1136–1149.CrossRefGoogle Scholar
  5. Beasley JE (1985a). Algorithms for unconstrained two-dimensional guillotine cutting. J Opl Res Soc 36: 297–306.CrossRefGoogle Scholar
  6. Beasley JE (1985b). An exact two-dimensional non-guillotine cutting tree-search procedure. Opns Res 33: 49–64.CrossRefGoogle Scholar
  7. Beasley JE (2004). A population heuristic for constrained two-dimensional non-guillotine cutting. Eur J Opl Res 156: 601–627.CrossRefGoogle Scholar
  8. Birgin EG and Lobato RD (2010). Orthogonal packing of identical rectangles within isotropic convex regions. Comput Ind Eng 59: 595–602.CrossRefGoogle Scholar
  9. Birgin EG, Morabito R and Nishihara FH (2005). A note on an L-approach for solving the manufacturer's pallet loading problem. J Opl Res Soc 56: 1448–1451.CrossRefGoogle Scholar
  10. Birgin EG, Martínez JM, Mascarenhas WF and Ronconi DP (2006a). Method of sentinels for packing items within arbitrary convex regions. J Opl Res Soc 57: 735–746.CrossRefGoogle Scholar
  11. Birgin EG, Martínez JM, Nishihara FH and Ronconi DP (2006b). Orthogonal packing of rectangular items within arbitrary convex regions by nonlinear optimization. Comput Opns Res 33: 3535–3548.CrossRefGoogle Scholar
  12. Birgin EG, Lobato RD and Morabito R (2010). An effective recursive partitioning approach for the packing of identical rectangles in a rectangle. J Opl Res Soc 61: 306–320.CrossRefGoogle Scholar
  13. Bortfeldt A and Winter T (2009). A genetic algorithm for the two-dimensional knapsack problem with rectangular pieces. Int Trans Oper Res 16: 685–713.CrossRefGoogle Scholar
  14. Boschetti MA, Mingozzi A and Hadjiconstantinou E (2002). New upper bounds for the two-dimensional orthogonal non-guillotine cutting stock problem. IMA J Manag Math 13: 95–119.CrossRefGoogle Scholar
  15. Caprara A and Monaci M (2004). On the two-dimensional knapsack problem. Opns Res Lett 32: 5–14.CrossRefGoogle Scholar
  16. Chen CS, Lee SM and Shen QS (1995). An analytical model for the container loading problem. Eur J Opl Res 80: 68–76.CrossRefGoogle Scholar
  17. Chen D and Huang W (2007). A new heuristic algorithm for constrained rectangle-packing problem. Asia-Pac J Opl Res 24: 463–478.CrossRefGoogle Scholar
  18. Cintra GF, Miyazawa FK, Wakabayashi Y and Xavier EC (2008). Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation. Eur J Opl Res 191: 61–85.CrossRefGoogle Scholar
  19. Cui Y and Zhang X (2007). Two-stage general block patterns for the two-dimensional cutting problem. Comput Opns Res 34: 2882–2893.CrossRefGoogle Scholar
  20. Cui Y, Wang Z and Li J (2005). Exact and heuristic algorithms for staged cutting problems. P I Mech Eng B-J Eng 219: 201–207.Google Scholar
  21. Dyckhoff H (1990). A typology of cutting and packing problems. Eur J Opl Res 44: 145–159.CrossRefGoogle Scholar
  22. Egeblad J and Pisinger D (2009). Heuristic approaches for the two- and three-dimensional knapsack packing problem. Comput Opns Res 36: 1026–1049.CrossRefGoogle Scholar
  23. Fayard D, Hifi M and Zissimopoulos V (1998). An efficient approach for large-scale two-dimensional guillotine cutting stock problems. J Opl Res Soc 49: 1270–1277.CrossRefGoogle Scholar
  24. Fekete SP, Schepers J and van der Veen JC (2007). An exact algorithm for higher-dimensional orthogonal packing. Opns Res 55: 569–587.CrossRefGoogle Scholar
  25. G Y-G and Kang M-K (2002). A new upper bound for unconstrained two-dimensional cutting and packing. J Opl Res Soc 53: 587–591.CrossRefGoogle Scholar
  26. Gilmore PC and Gomory RE (1965). Multistage cutting stock problems of two and more dimensions. Opns Res 13: 94–120.CrossRefGoogle Scholar
  27. Gonçalves JF (2007). A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal packing problem. Eur J Opl Res 183: 1212–1229.CrossRefGoogle Scholar
  28. Hadjiconstantinou E and Christofides N (1995). An exact algorithm for general, orthogonal, two-dimensional knapsack-problems. Eur J Opl Res 83: 39–56.CrossRefGoogle Scholar
  29. Herz JC (1972). Recursive computational procedure for two-dimensional stock cutting. IBM J Res Dev 16: 462–469.CrossRefGoogle Scholar
  30. Hifi M (1997). The DH/KD algorithm: A hybrid approach for unconstrained two-dimensional cutting problems. Eur J Opl Res 97: 41–52.CrossRefGoogle Scholar
  31. Hifi M (2001). Exact algorithms for large-scale unconstrained two and three staged cutting problems. Comput Optim Appl 18: 63–88.CrossRefGoogle Scholar
  32. Hifi M and Zissimopoulos V (1996a). A recursive exact algorithm for weighted two-dimensional cutting. Eur J Opl Res 91: 553–564.CrossRefGoogle Scholar
  33. Hifi M and Zissimopoulos V (1996b). Une amélioration de l’algorithme ŕecursif de Herz pour le problème de découpe à deux dimensions. RAIRO 30: 111–125.Google Scholar
  34. Hopper E and Turton BCH (2001). An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. Eur J Opl Res 128: 34–57.CrossRefGoogle Scholar
  35. Huang W and Chen D (2007). An efficient heuristic algorithm for rectangle-packing problem. Simul Model Pract Th 15: 1356–1365.CrossRefGoogle Scholar
  36. Leung TW, Chan CK and Troutt MD (2003). Application of a mixed simulated annealing-genetic algorithm heuristic for the two-dimensional orthogonal packing problem. Eur J Opl Res 145: 530–542.CrossRefGoogle Scholar
  37. Lins L, Lins S and Morabito R (2003). An L-approach for packing (𝓁,w)-rectangles into rectangular and L-shaped pieces. J Opl Res Soc 54: 777–789.CrossRefGoogle Scholar
  38. Mascarenhas WF and Birgin EG (2010). Using sentinels to detect intersections of convex and nonconvex polygons. Comput Appl Math 29: 247–267.CrossRefGoogle Scholar
  39. Morabito R and Morales S (1998). A simple and effective recursive procedure for the manufacturer's pallet loading problem. J Opl Res Soc 49: 819–828.Google Scholar
  40. Morabito R and Morales S (1999). Erratum to ‘A simple and effective recursive procedure for the manufacturer's pallet loading problem’. J Opl Res Soc 50: 876–876.CrossRefGoogle Scholar
  41. Morabito R, Arenales M and Arcaro VF (1992). An and-or-graph approach for two-dimensional cutting problems. Eur J Opl Res 58: 263–271.CrossRefGoogle Scholar
  42. Padberg M (2000). Packing small boxes into a big box. Math Method Opns Res 52: 1–21.CrossRefGoogle Scholar
  43. Scheithauer G (1999). LP-based bounds for the container and multi-container loading problem. Int Trans Oper Res 6: 199–213.CrossRefGoogle Scholar
  44. Scheithauer G and Terno J (1993). Modeling of packing problems. Optimization 28: 63–84.CrossRefGoogle Scholar
  45. Scheithauer G and Terno J (1996). The G4-heuristic for the pallet loading problem. J Opl Res Soc 47: 511–522.CrossRefGoogle Scholar
  46. Tsai RD, Malstrom EE and Kuo W (1993). Three-dimensional palletization of mixed box sizes. IIE Trans 25: 64–75.CrossRefGoogle Scholar
  47. Wäscher G, Haußner H and Schumann H (2007). An improved typology of cutting and packing problems. Eur J Opl Res 183: 1109–1130.CrossRefGoogle Scholar
  48. Wei L, Zhang D and Chen Q (2009). A least wasted first heuristic algorithm for the rectangular packing problem. Comput Opns Res 36: 1608–1614.CrossRefGoogle Scholar

Copyright information

© Operational Research Society 2011

Authors and Affiliations

  1. 1.University of São PauloSão PauloBrazil
  2. 2.Federal University of São CarlosSão CarlosBrazil

Personalised recommendations