Journal of the Operational Research Society

, Volume 63, Issue 2, pp 261–277

A column generation-based heuristic for rostering with work patterns

  • R Lusby
  • A Dohn
  • T M Range
  • J Larsen
General Paper

Abstract

This paper addresses the Ground Crew Rostering Problem with Work Patterns, an important manpower planning problem arising in the ground operations of airline companies. We present a cutting stock-based integer programming formulation of the problem and describe a powerful heuristic decomposition approach, which utilizes column generation and variable fixing, to construct efficient rosters for a six-month time horizon. The time horizon is divided into smaller blocks, where overlaps between the blocks ensure continuity. The proposed methodology is able to circumvent one step of the conventional roster construction process by generating rosters directly based on the estimated workload. We demonstrate that this approach has the additional advantage of being able to easily incorporate robustness in the roster. Computational results on real-life instances confirm the efficiency of the approach.

Keywords

manpower planning optimization cutting stock problem column generation 

References

  1. Abbink E, Fischetti M, Kroon L, Timmer G and Vromans M (2005). Reinventing crew scheduling at Netherlands railways. Interfaces 35 (5): 393–401.CrossRefGoogle Scholar
  2. Alfares HK (1997). An efficient two-phase algorithm for cyclic days-off scheduling. Comput Opns Res 25 (11): 913–923.CrossRefGoogle Scholar
  3. Alfares HK (2002). Optimum workforce scheduling under the (14, 21) days-off timetable. J Appl Math Decis Sci 63 (3): 191–199.CrossRefGoogle Scholar
  4. Amor HB and de Carvalho JV (2005). Cutting stock problems. In: Desaulniers G, Desrosiers J and Solomon M (eds). Column Generation. Chapter 5. Springer: New York, pp 131–161.CrossRefGoogle Scholar
  5. Anbil R, Gelman E, Patty B and Tanga R (1991). Recent advances in crew-pairing optimization at American Airlines. Interfaces 21 (1): 62–74.CrossRefGoogle Scholar
  6. Barnhart C, Cohn AM, Johnson EL, Klabjan D, Nemhauser GL and Vance PH (2003). Airline crew scheduling. In: Hall RW (ed). Handbook of Transportation Science. Kluwer Academic Publishers: Dordrecht.Google Scholar
  7. Brusco MJ, Jacobs LW, Bongiorno RJ, Lyons DV and Tang B (1995). Improving personnel scheduling at airline stations. Ops Res 43 (5): 741–751.CrossRefGoogle Scholar
  8. Burke EK, De Causmaecker P, vanden Berghe G and van Landeghem H (2004). The state of the art of nurse rostering. J Scheduling 7: 441–499.CrossRefGoogle Scholar
  9. Burke EK, De Causmaecker P, De Maere G, Mulder J, Paelinck M and Vanden Berghe G (2010). A multi-objective approach for robust airline scheduling. Comput Opns Res 37 (5): 822–832.CrossRefGoogle Scholar
  10. Butchers ER, Day PR, Goldie AP, Miller S, Meyer JA, Ryan DM, Scott AC and Wallace CA (2001). Optimized crew scheduling at Air New Zealand. Interfaces 31 (1): 30–56.CrossRefGoogle Scholar
  11. Cheang B, Li H, Lim A and Rodrigues B (2003). Nurse rostering problems—A bibliographic survey. Eur J Opl Res 151: 447–460.CrossRefGoogle Scholar
  12. Chu SCK (2007). Generating, scheduling and rostering of shift crew-duties: Applications at the Hong Kong International Airport. Eur J Opl Res 177: 1764–1778.CrossRefGoogle Scholar
  13. Clausen J, Larsen A, Larsen J and Rezanova NJ (2010). Disruption management in the airline industry – Concepts, models and methods. Comput Opns Res 37 (5): 809–821.CrossRefGoogle Scholar
  14. Danna E and Pape CL (2005). Branch-and-price heuristics: A case study on the vehicle routing problem with time windows. In: Guy Desaulniers JD and Solomon MM (eds). Column Generation. Chapter 4. Springer: New York, pp 99–129.CrossRefGoogle Scholar
  15. Day PR and Ryan DM (1997). Flight attendant rostering for short-haul airline operations. Opns Res 45 (5): 649–661.CrossRefGoogle Scholar
  16. Desaulniers G (2010). Branch-and-price-and-cut for the split-delivery vehicle routing problem with time windows. Opns Res 58 (1): 179–192.CrossRefGoogle Scholar
  17. Desaulniers G, Desrosiers J, Ioachim I, Solomon M, Soumis F and Villeneuve D (1998). A unified framework for deterministic time constrained vehicle routing and crew scheduling problems. In: Crainic T and Laporte G (eds). Fleet Management and Logistics. Chapter 3. Kluwer Academic Publishers: Dordrecht, pp 57–94.CrossRefGoogle Scholar
  18. Desaulniers G, Desrosiers J and Solomon MM (2002). Accelerating Strategies in Column Generation Methods for Vehicle Routing and Crew Scheduling Problems. Kluwer: Norwell, pp 309–324.Google Scholar
  19. Desrochers M and Soumis F (1988). A reoptimization algorithm for the shortest path problem with time windows. Eur J Opl Res 35 (2): 242–254.CrossRefGoogle Scholar
  20. Desrosiers J and Lübbecke ME (2005). Column generation. In: Desaulniers G, Desrosiers J and Solomon MM (eds). A Primer in Column Generation. Chapter 1. Springer: New York, pp 1–32.CrossRefGoogle Scholar
  21. Dohn A, Mason A and Ryan D (2010). A generic solution approach to nurse rostering. Technical Report 5, Department of Management Engineering, Technical University of Denmark.Google Scholar
  22. Dowling D, Krishnamoorthy M, Mackenzie H and Sier D (1997). Staff rostering at a large international airport. Ann Opns Res 72: 125–147.CrossRefGoogle Scholar
  23. Ernst A, Jiang H, Krishnamoorthy M and Sier D (2004). Staff scheduling and rostering: A review of applications, methods, and models. Eur J Opns Res 153: 3–27.CrossRefGoogle Scholar
  24. Eveborn P and Rönnqvist M (2004). Scheduler—A system for staff planning. Ann Opns Res 128 (1–4): 21–45.CrossRefGoogle Scholar
  25. Gendreau M, Ferland J, Gendron B, Hail N, Jaumard B, Lapierre S, Pesant G and Soriano P (2006). Physician scheduling in emergency rooms. In: Burke EK and Rudová H (eds). Practice and Theory of Automated Timetabling VI. 6th International Conference, PATAT. Springer: Verlag.Google Scholar
  26. Irnich S (2008). Resource extension functions: Properties, inversion, and generalization to segments. OR Spect 30 (1): 113–148.CrossRefGoogle Scholar
  27. Irnich S and Desaulniers G (2005). Shortest path problems with resource constraints. In: Desaulniers G, Desrosiers J, Solomon M (eds). Column Generation. Chapter 2. Springer: New York, pp 33–66.CrossRefGoogle Scholar
  28. Kellogg DL and Walczak S (2007). Nurse scheduling: From academia to implementation or not? Interfaces 37 (4): 355–369.CrossRefGoogle Scholar
  29. Mehrotra A, Murphy K and Trick M (2000). Optimal shift scheduling: A branch-and-price approach. Naval Res Logist 47 (3): 185–200.CrossRefGoogle Scholar
  30. Ryan D and Foster B (1981). An integer programming approach to scheduling. In: Wren A (ed). Computer Scheduling of Public Transport. Urban Passenger Vehicle and Crew Scheduling. North-Holland, Amsterdam, pp 269–280.Google Scholar
  31. Vohra RV (1987). The cost of consecutivity in the (5, 7) cyclic staffing problem. IIE Trans 29: 942–950.Google Scholar
  32. Wäscher G and Gau T (1996). Heuristics for the integer one-dimensional cutting stock problem: A computational study. OR Spect 18 (3): 131–144.CrossRefGoogle Scholar
  33. Weide O, Ryan D and Ehrgott M (2010). An iterative approach to robust and integrated aircraft routing and crew scheduling. Comput Opns Res 37 (5): 833–844.CrossRefGoogle Scholar

Copyright information

© Operational Research Society 2011

Authors and Affiliations

  • R Lusby
    • 1
  • A Dohn
    • 1
  • T M Range
    • 2
  • J Larsen
    • 1
  1. 1.Technical University of DenmarkLyngbyDenmark
  2. 2.University of Southern DenmarkOdense MDenmark

Personalised recommendations