Ant Local Search and its efficient adaptation to graph colouring

Theoretical Paper

Abstract

In this paper, we propose a new kind of ant algorithm called Ant Local Search. In most ant algorithms, the role of each ant is to build a solution in a constructive way. In contrast, we propose to consider each ant as a local search, where at each step and in concordance with all ant algorithms, each ant modifies the current solution by the use of the greedy force and the trail systems. We also propose ways to reduce the computational effort associated with each ant decision. Such a new and general ant methodology is then applied to the well-known k-colouring problem, which is NP-hard. Computational experiments give evidence that our algorithm is competitive with the best colouring methods.

Keywords

heuristics networks and graphs artificial life optimization 

References

  1. Blöchliger I and Zufferey N (2008). A graph coloring heuristic using partial solutions and a reactive tabu scheme. Comput Opns Res 35: 960–975.CrossRefGoogle Scholar
  2. Blum C (2005). Ant colony optimization: Introduction and recent trends. Phys Life Rev 2: 353–373.CrossRefGoogle Scholar
  3. Brélaz D (1979). New methods to color the vertices of a graph. Commun Assoc Comput Mach 22: 251–256.Google Scholar
  4. Chams D, Hertz A and de Werra D (1987). Some experiments with simulated annealing for coloring graphs. Eur J Opl Res 32: 260–266.CrossRefGoogle Scholar
  5. Costa D and Hertz A (1997). Ants can colour graphs. J Opl Res Soc 48: 295–305.CrossRefGoogle Scholar
  6. Dorigo M (1992). Optimization, learning and natural algorithms (in Italian). PhD thesis, Politecnico di Milano, Dipartimento di Elettronica, Italy.Google Scholar
  7. Dorigo M and Gambardella LM (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE T Evolut Comput 1(1): 53–66.CrossRefGoogle Scholar
  8. Dorigo M and Stützle T (2003). The Ant Colony Optimization Metaheuristic: Algorithms, applications, and advances. In: Glover, F and Kochenberger, G (eds). Handbook of Metaheuristics. Spring: New York, pp 251–285.Google Scholar
  9. Dorigo M, Maniezzo V and Colorni A (1991). Positive feedback as a search strategy. Technical report 91-016. Politecnico di Milano, Dipartimento di Elettronica, Italy.Google Scholar
  10. Dorigo M, Birattari M and Stützle T (2006). Ant colony optimization—Artificial ants as a computational intelligence technique. IEEE Comput Int Mag 1(4): 28–39.CrossRefGoogle Scholar
  11. Fleurent C and Ferland JA (1996). Genetic and hybrid algorithms for graph coloring. Ann Opns Res 63: 437–461.CrossRefGoogle Scholar
  12. Galinier P and Hao JK (1999). Hybrid evolutionary algorithms for graph coloring. J Comb Optim 3: 379–397.CrossRefGoogle Scholar
  13. Galinier P and Hertz A (2006). A survey of local search methods for graph coloring. Comput Opns Res 33: 2547–2562.CrossRefGoogle Scholar
  14. Galinier P, Hertz A and Zufferey N (2008). An adaptive memory algorithm for the k-coloring problem. Discrete Appl Math 156: 267–279.CrossRefGoogle Scholar
  15. Gamst A and Rave W (1982). On frequency assignment in mobile automatic telephone systems. Proceedings of GLOBECOM'82, pp. 309–315.Google Scholar
  16. Garey M and Johnson DS (1979). Computer and Intractability: A Guide to the Theory of NP-Completeness. Freeman: San Francisco.Google Scholar
  17. Glass C (2002). Bag rationalisation for a food manufacturer. J Opl Res Soc 53: 544–551.CrossRefGoogle Scholar
  18. Glass CA and Prügel-Bennett A (2005). A polynomial searchable exponential neighbourhood for graph colouring. J Opl Res Soc 56: 324–330.CrossRefGoogle Scholar
  19. Glover F and Laguna M (1997). Tabu Search. Kluwer Academic Publishers: Boston, MA.CrossRefGoogle Scholar
  20. Herrmann F and Hertz A (2002). Finding the chromatic number by means of critical graphs. ACM J Exp Algorithmics 7(10): 1–9.Google Scholar
  21. Hertz A and de Werra D (1987). Using tabu search techniques for graph coloring. Computing 39: 345–351.CrossRefGoogle Scholar
  22. Hertz A and Zufferey N (2006). A new ant colony algorithm for the graph coloring problem. In: Pelta DA and Krasnogor N (eds). Proceedings of the Workshop on Nature Inspired Cooperative Strategies for Optimization, NICSO 2006, 29–30 June. Granada, Spain, pp 51–60.Google Scholar
  23. Hertz A, Plumettaz M and Zufferey N (2008). Variable space search for graph coloring. Discrete Appl Math 156: 2551–2560.CrossRefGoogle Scholar
  24. Johnson DS, Aragon CR, McGeoch LA and Schevon C (1991). Optimization by simulated annealing: An experimental evaluation: Part II, Graph coloring and number partitioning. Opns Res 39: 378–406.CrossRefGoogle Scholar
  25. Leighton FT (1979). A graph coloring algorithm for large scheduling problems. J Res Nat Bur Stand 84: 489–505.CrossRefGoogle Scholar
  26. Malaguti E, Monaci M and Toth P (2008). A metaheuristic approach for the vertex coloring problem. INFORMS J Comput 20: 302–316.CrossRefGoogle Scholar
  27. Mehrotra A and Trick MA (1996). A column generation approach for graph coloring. INFORMS J Comput 8: 344–354.CrossRefGoogle Scholar
  28. Morgenstern C (1996). Distributed coloration neighborhood search. DIMACS Ser Discrete Math Theor Comput Sci 26: 335–357.Google Scholar
  29. Petford A and Welsh D (1989). A randomised 3-colouring algorithm. Discrete Math 74: 253–261.CrossRefGoogle Scholar
  30. Shawe-Taylor J and Zerovnik J (2002). Ants and graph coloring. In: Kůrková V, Steele, NC, Neruda R and Kárný M (eds). Proceedings of ICANNGA'01. Springer-Verlag: New York, pp 276–279.Google Scholar
  31. Stecke K (1985). Design, planning, scheduling, and control problems of flexible manufacturing systems. Ann Opns Res 3: 3–12.CrossRefGoogle Scholar
  32. Stützle T and Hoos H (1997). Improving the ant system: A detailed report on the max–min ant system. Technical report. Department of Computer Sciences—Intellectics Group, Technical University of Darmstadt.Google Scholar
  33. Zufferey N (2002). Heuristiques pour les Problèmes de la Coloration des Sommets d'un Graphe et d'Affectation de Fréquences avec Polarités. PhD thesis, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.Google Scholar
  34. Zufferey N, Amstutz P and Giaccari P (2008). Graph colouring approaches for a satellite range scheduling problem. J Sched 11: 263–277.CrossRefGoogle Scholar

Copyright information

© Operational Research Society 2009

Authors and Affiliations

  1. 1.Columbia UniversityNew YorkUnited States
  2. 2.Geneva School of Business Administration (HEG)GenevaSwitzerland
  3. 3.University of GenevaGenevaSwitzerland

Personalised recommendations