Journal of the Operational Research Society

, Volume 61, Issue 3, pp 530–542

Minimizing greenhouse gas emissions in intermodal freight transport: an application to rail service design

  • J Bauer
  • T Bektaş
  • T G Crainic
Part 2: Transportation, Logistics and the Environment


Freight transport has undesirable effects on the environment. The most prominent of these is greenhouse gas emissions. Intermodal freight transport, where freight is shipped from origin to destination by a sequence of at least two transportation modes, offers the possibility of shifting freight (either partially or in full) from one mode to another in the hope of reducing the greenhouse emissions by appropriately scheduling the services and routing the freight. Traditional planning methods for scheduling services in an intermodal transportation network usually focus on minimizing travel or time-related costs of transport. This article breaks away from such an approach by addressing the issue of incorporating environment-related costs (greenhouse gases, to be specific) into freight transportation planning and proposes an integer program in the form of a linear cost, multicommodity, capacitated network design formulation that minimizes the amount of greenhouse gas emissions of transportation activities. Computational results based on an application of the proposed approach on a real-life rail freight transportation network are presented.


green logistics greenhouse gas emissions intermodal freight transport scheduled service network design space time network multicommodity network design 


  1. All online references that appear in this list have been accessed on 1st May 2009.Google Scholar
  2. Ahn K, Rakha H, Trani A and Van Aerde M (2002). Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels . J Transp Eng-ASCE 128(2): 182–190.CrossRefGoogle Scholar
  3. Andersen J and Christiansen M (2009). Designing new European rail freight services . J Opl Res Soc 60(3): 348–360.CrossRefGoogle Scholar
  4. Andersen J, Crainic TG and Christiansen M (2009a). Service network design with management and coordination of multiple fleets . Eur J Opl Res 193(2): 377–389.CrossRefGoogle Scholar
  5. Andersen J, Crainic TG and Christiansen M (2009b). Service network design with asset management: Formulations and comparative analyses . Transport Res C-Emer 17(2): 197–207.CrossRefGoogle Scholar
  6. Assad AA (1980). Models for rail transportation . Transport Res A-Pol 14(3): 205–220.CrossRefGoogle Scholar
  7. Barth M, Younglove T and Scora G (2005). Development of a heavy-duty diesel modal emissions and fuel consumption model. Technical report. California PATH Program, Institute of Transportation Studies, University of California at Berkeley.Google Scholar
  8. Bektaş T and Crainic TG (2008). A brief overview of intermodal transportation. In: Taylor G.D (ed.) Logistics Engineering Handbook, Chapter 28. Taylor and Francis Group: Boca Raton: FL: USA. pp 1–16.Google Scholar
  9. Christiansen M, Fagerholt K, Nygreen B and Ronen D (2007). Maritime transportation. In: Barn-hart C., Laporte G (eds.) Transportation, Handbooks in Operations Research and Management Science, Vol. 14. Chapter 4. Amsterdam: North-Holland, pp 189–284.Google Scholar
  10. Coe, E (2005). Average carbon dioxide emissions resulting from gasoline and diesel fuel. Technical report. United States Environmental Protection Agency. Available at
  11. Cordeau JF, Toth P and Vigo D (1998). A survey of optimization models for train routing and scheduling . Transport Sci 32(4): 526–538.CrossRefGoogle Scholar
  12. Crainic TG (2000). Service network design in freight transportation . Eur J Opl Res 122(2): 272–288.CrossRefGoogle Scholar
  13. Crainic TG (2003). Long-haul freight transportation . In: Hall RW (ed). Handbook of Transportation Science, 2nd edn. Kluwer Academic Publishers: Norwell, MA, pp. 451–516.CrossRefGoogle Scholar
  14. Crainic TG and Florian MA (2008). National planning models and instruments. Publication CIRRELT-2008-20. Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT), Montréal, QC, Canada. Forthcoming in INFOR.Google Scholar
  15. Crainic TG and Kim KH (2007). Intermodal transportation. In: Barnhart C and Laporte G (eds.) Transportation, Handbooks in Operations Research and Management Science, Vol. 14. Chapter 8. Amsterdam: North-Holland, pp 467–537.Google Scholar
  16. Crainic TG and Laporte G (1997). Planning models for freight transportation . Eur J Opl Res 97(3): 409–438.CrossRefGoogle Scholar
  17. Crainic TG and Rousseau J-M (1986). Multicommodity, multimode freight transportation: A general modeling and algorithmic framework for the service network design problem . Transport Res B-Meth 20(3): 225–242.CrossRefGoogle Scholar
  18. Crainic TG, Ricciardi N and Storchi G (2007). Models for evaluating and planning city logistics systems. Publication CIRRELT-2007-65. Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT), Montréal, QC, Canada.Google Scholar
  19. DEFRA (2007). The social cost of carbon and the shadow price of carbon: What they are, and how to use them in economic appraisal in the UK. Technical report. Available at
  20. DEFRA (2008). Climate Change Act 2008 – key provisions/milestones. Available at
  21. Deutsche Bahn (2008). Kombinierter Verkehr: Zweiachsiger Tragwagen für Großcontainer und Wechselbehälter. Available at
  22. Forkenbrock DJ (2001). Comparison of external costs of rail and truck freight transportation . Transport Res A-Pol 35(4): 321–337.Google Scholar
  23. Holmberg K and Yuan D (2000). A Lagrangian heuristic based branch-and-bound approach for the capacitated network design problem . Opl Res 48(3): 461–481.CrossRefGoogle Scholar
  24. IEA (2008). Key world energy statistics 2008. Technical report. International Energy Agency. Available at
  25. IPCC (1995a). Climate change 1995: IPCC second assessment. Technical report. Intergovernmental Panel on Climate Change. Available at
  26. IPCC (1995b). Summary for policymakers: The economic and social dimensions of climate change. Technical report. Intergovernmental Panel on Climate Change. Available at
  27. IPCC (2007). Climate change 2007: Synthesis report. Technical report. Intergovernmental Panel on Climate Change. Available at
  28. Jørgensen MW and Sorenson SC (1997). Estimating emissions from railway traffic, report for the project MEET: Methodologies for estimating air pollutant emisssions from transport. Technical report. Department of Energy Engineering, Technical University of Denmark, ETEO-97-03, Denmark.Google Scholar
  29. Knörr W (2008). EcoTransIT: Ecological transport information tool - Environmental methodology and data. Technical report. Institut für Energie (ifeu) und Umweldforschung Heidelberg GmbH. Available at
  30. Pedersen MB, Crainic TG and Madsen OBG (2009). Models and tabu search meta-heuristics for service network design with asset-balance requirements . Transport Sci 43(2): 158–177.CrossRefGoogle Scholar
  31. Powell WB and Sheffi Y (1983). The load-planning problem of motor carriers: Problem description and a proposed solution approach . Transport Res A-Pol 17(6): 471–480.Google Scholar
  32. Powell WB and Sheffi Y (1989). Design and implementation of an interactive optimization system for the network design in the motor carrier industry . Opns Res 37(1): 12–29.CrossRefGoogle Scholar
  33. Rail Cargo Austria (2006). Besondere Beförderungsbedingungen mit Preisen und Konditionen für den Polnisch-Österreichischen Eisenbahngüterverker für Wagenladungen; Polnisch-Österreichischer Eisenbahngütertarif (pögt). Technical report. Available at .
  34. Rondinelli D and Berry M (2000). Multimodal transportation, logistics, and the environment: Managing interactions in a global economy . Eur Manage J 18(4): 398–410.CrossRefGoogle Scholar
  35. Ross M (2009). Fuel efficiency and the physics of automobiles . Contemp Phys 38(6): 381–394.CrossRefGoogle Scholar
  36. Rozklad-PKP (2009). Available at
  37. Sandvik ET (2005). Environmental impacts of intermodal freight transport. Technical Report 0513. Molde University College. Available at
  38. Sbihi A and Eglese RW (2007). Combinatorial optimization and green logistics . 4OR: A Quart J of Opns Res 5(2): 99–116.CrossRefGoogle Scholar
  39. Siemens (2008). Siemens AG reference electric three-system high-performance locomotive Rh 1216, Austria. Available at
  40. Wikipedia (2009). Nordbahn, Österreich. Available at

Copyright information

© Operational Research Society 2009

Authors and Affiliations

  • J Bauer
    • 1
  • T Bektaş
    • 1
  • T G Crainic
    • 2
  1. 1.University of SouthamptonSouthamptonUK
  2. 2.Université du Québec à MontréalMontréalCanada

Personalised recommendations