Journal of the Operational Research Society

, Volume 60, Issue 11, pp 1535–1545

Farrell revisited–Visualizing properties of DEA production frontiers

Special Issue Paper


The contributions of the paper are threefold: (i) compare with mathematical rigour the data envelopment analysis (DEA) model of Charnes, Cooper, and Rhodes and the Farrell model exhibiting constant returns to scale, (ii) reinterpret the contribution of Farrell and Fieldhouse that extended the analysis to variables returns to scale and establish the connection with the approach in Banker, Charnes, and Cooper, and (iii) provide graphical visualization of properties of the frontier function. Both papers by Farrell emphasized the importance of graphical visualization of non-parametric frontier functions, but, to our knowledge, this is seldom followed up in the literature. We use a graphical package (EffiVision) with a numerical representation of the frontier functions, representing the contemporary development of visualization. By making suitable cuts through the DEA frontier in multidimensional space, various graphical representations of features of economic interest can be done. Development of ray average cost function and scale elasticity plots are novel illustrations.


Farrell efficiency measure production frontier DEA grouping method variable returns to scale visualization 


  1. Banker RD, Charnes A and Cooper WW (1984). Some models for estimating technical and scale inefficiencies . Mngt Sci 39: 1078–1092.CrossRefGoogle Scholar
  2. Boles JN (1967). Efficiency squared—efficient computation of efficiency indexes . In: Western Farm Economic Association, Proceedings 1966, pp. 137–142.Google Scholar
  3. Boles JN (1971). The 1130 Farrell efficiency system–multiple products, multiple factors. Giannini Foundation of Agricultural Economics, University of California: Berkeley, USA.Google Scholar
  4. Charnes A, Cooper WW and Rhodes E (1978). Measuring the efficiency of decision making units . Eur J Opl Res 2: 429–444.CrossRefGoogle Scholar
  5. Cooper WW, Seiford LM and Tone K (2000). Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software . Kluwer Academic Publishers: Dordrecht/Boston/London.Google Scholar
  6. Dantzig GB (1998). Linear Programming and Extensions . Princeton Landmarks in Mathematics. Princeton University Press: Princeton.Google Scholar
  7. Farrell MJ (1957). The measurement of productive efficiency . J R Stat Soc Ser A-G 120(III): 253–281.CrossRefGoogle Scholar
  8. Farrell MJ and Fieldhouse M (1962). Estimating efficient production functions under increasing returns to scale . J R Stat Soc Ser A-G 125: 252–267.CrossRefGoogle Scholar
  9. Frisch R (1965). Theory of Production . D. Reidel: Dordrecht.CrossRefGoogle Scholar
  10. Førsund FR and Hjalmarsson L (2004). Are all scales optimal in DEA? Theory and empirical evidence . J Prod Anal 21(1): 25–48.CrossRefGoogle Scholar
  11. Førsund FR and Sarafoglou N (2002). On the origins of data envelopment analysis . J Prod Anal 17: 23–40.CrossRefGoogle Scholar
  12. Førsund FR and Sarafoglou N (2005). The tale of two research communities: the diffusion of research on productive efficiency . Int J Prod Econ 98(1): 17–40.CrossRefGoogle Scholar
  13. Førsund FR, Hjalmarsson L, Krivonozhko VE and Utkin OB (2007). Calculation of scale elasticities in DEA models: Direct and indirect approaches . J Prod Anal 28(1–2): 45–56.CrossRefGoogle Scholar
  14. Hoffman AJ (1957). Discussion on Mr. Farrell's paper. In: The measurement of productive efficiency . J R Stat Soc Ser A-G 120(III): 284.Google Scholar
  15. Krivonozhko V, Utkin OB, Volodin AV, Sablin IA and Patrin M (2004). Constructions of economic functions and calculation of marginal rates in DEA using parametric optimization methods . J Opl Res Soc 55: 1049–1058.CrossRefGoogle Scholar
  16. Krivonozhko V, Utkin OB, Volodin AV and Sablin IA (2005). About the structure of boundary points in DEA . J Opl Res Soc 56: 1373–1378.CrossRefGoogle Scholar
  17. Meller P (1976). Efficiency frontiers for industrial establishments of different sizes . Explorations Econ Res, Occasional Papers of the National Bureau of Economic Research 3: 379–407.Google Scholar
  18. Nikaido H (1968). Convex Structures and Economic Theory . Academic Press: New York.Google Scholar
  19. Seitz WD (1970). The measurement of efficiency relative to a frontier production function . Am J Agric Econ 52: 505–511.CrossRefGoogle Scholar
  20. Seitz WD (1971). Productive efficiency in the steam-electric generating industry . J Polit Econ 79: 878–886.CrossRefGoogle Scholar
  21. Shephard RW (1970). Theory of Cost and Production Functions, first edition, 1953. Princeton University Press: New Jersey.Google Scholar
  22. Todd D (1977). Efficiency and size: Comments and extensions . Econ Soc Rev 8: 305–312.Google Scholar

Copyright information

© Palgrave Macmillan 2009

Authors and Affiliations

  • F R Førsund
    • 1
  • S A C Kittelsen
    • 2
  • V E Krivonozhko
    • 3
  1. 1.University of OsloOsloNorway
  2. 2.The Frisch CentreOsloNorway
  3. 3.Institute for Systems AnalysisMoscowRussia

Personalised recommendations