Journal of International Business Studies

, Volume 47, Issue 5, pp 595–609 | Cite as

Global value chains from a 3D printing perspective

  • André O Laplume
  • Bent Petersen
  • Joshua M Pearce
Original Article


This article outlines the evolution of additive manufacturing technology, culminating in 3D printing and presents a vision of how this evolution is affecting existing global value chains (GVCs) in production. In particular, we bring up questions about how this new technology can affect the geographic span and density of GVCs. Potentially, wider adoption of this technology has the potential to partially reverse the trend towards global specialization of production systems into elements that may be geographically dispersed and closer to the end users (localization). This leaves the question of whether in some industries diffusion of 3D printing technologies may change the role of multinational enterprises as coordinators of GVCs by inducing the engagement of a wider variety of firms, even households.


additive manufacturing 3D printing value chain geographic span geographic density 


Cet article étudie l'évolution de la technologie manufacturière additive, culminant dans l'impression 3D, et présente une perspective sur comment cette évolution influence les chaînes de valeur globales existantes (CVG) dans la production. En particulier, nous posons des questions sur comment cette nouvelle technologie peut influencer la dispersion et la densité géographiques des CVG. Il est possible qu’une plus forte adoption de cette technologie ait le potentiel d'inverser partiellement la tendance vers une spécialisation globale des systèmes de production dans des unités qui peuvent être dispersées au niveau géographique et qui peuvent être plus proches des utilisateurs finaux (localisation). Ceci pose la question si, dans certains secteurs d’activité, la diffusion des technologies d'impression 3D peut modifier le rôle des entreprises multinationales comme coordinateurs des CVG en entraînant l'engagement d'une plus grande variété d'entreprises, et même de foyers.


Este articulo describe la evolución de la tecnología de fabricación aditiva, que culmina con la impresión 3D y presenta una visión de cómo esta evolución esta afectando las cadenas globales de valor (CGV) existentes en la producción. En particular, planteamos cómo esta nueva tecnología puede afectar la dispersión y densidad geográfica de las cadenas globales de valor. Potencialmente, una mayor adopción de esta tecnología tiene el potencial para revertir parcialmente la tendencia a la especialización global de sistemas de producción en elementos que pueden estar dispersos geográficamente y más cercanos a los usuarios finales (localización). Esto lleva a la pregunta de si en algunas industrias la difusión de tecnologías de impresión 3D pudiera cambiar el papel de las empresas multinacionales como coordinadoras de CGV mediante el inducir la participación de una variedad más amplia de firmas, e incluso individuos.


Este artigo descreve a evolução da tecnologia de fabricação aditiva, culminando com a impressão 3D, e apresenta uma visão de como essa evolução está afetando as existentes cadeias globais de valor (GVCs) na produção. Em particular, nós levantamos questões sobre como esta nova tecnologia pode afetar a extensão geográfica e a densidade das GVCs. Potencialmente, uma ampla adoção dessa tecnologia tem o potencial de reverter parcialmente a tendência para a especialização global de sistemas de produção em elementos que podem estar geograficamente dispersos e mais próximos dos usuários finais (localização). Isso deixa a questão se, em algumas indústrias, a difusão de tecnologias de impressão 3D pode mudar o papel das empresas multinacionais como coordenadoras das GVCs ao induzir o envolvimento de uma ampla variedade de empresas, mesmo as famílias.


这篇文章概述了最终形成3D打印的增材制造技术的演变, 并展示了这种演变是如何影响生产中的现有全球价值链 (GVCs) 的愿景。尤其是, 我们提出了关于这项新技术如何会影响GVCs的地域跨度与密度的问题。潜在地, 这项技术的广泛采用有可能部分逆转生产系统的全球专业化趋势向可能在地域上分散且更加接近终端用户 (本地化) 的生产元素发展。这就产生了3D打印技术在一些行业中的扩散是否能通过诱导更广泛的公司甚至家庭的参与而可能改变跨国公司作为GVCs协调者角色这个问题。



  1. Anzalone, G. C., Wijnen, B., & Pearce, J. M. 2015. Multi-material additive and subtractive prosumer digital fabrication with a free and open-source convertible delta RepRap 3-D printer. Rapid Prototyping Journal, 21 (5): 506–519.CrossRefGoogle Scholar
  2. Anzalone, G. C., Zhang, C., Wijnen, B., Sanders, P. G., & Pearce, J. M. 2013. A low-cost open-source metal 3D Printer. IEEE Access, 1: 803–810.CrossRefGoogle Scholar
  3. Baden, T., Chagas, A. M., Gage, G., Marzullo, T., Prieto-Godino, L. L., & Euler, T. 2015. Open labware: 3-D printing your own lab equipment. PLOS Biology, 13 (3): e1002086.CrossRefGoogle Scholar
  4. Baechler, C., DeVuono, M., & Pearce, J. M. 2012. Distributed recycling of waste polymer into RepRap feedstock. Rapid Prototyping Journal, 19 (2): 118–125.CrossRefGoogle Scholar
  5. Baldwin, C., & Clark, K. B. 2000. Design rules: Volume I, The power of modularity. Cambridge, MA: MIT Press.Google Scholar
  6. Berman, B. 2012. 3D printing: The new industrial revolution. Business Horizons, 55 (2): 155–162.CrossRefGoogle Scholar
  7. Bowyer, A. 2014. 3D Printing and humanity’s first imperfect replicator. 3D Printing and Additive Manufacturing, 1 (1): 4–5.CrossRefGoogle Scholar
  8. Bradshaw, S., Bowyer, A., & Haufe, P. 2010. The intellectual property implications of low-cost 3D printing. SCRIPTed, 7 (1): 5–31.Google Scholar
  9. Buckley, P. J., & Ghauri, P. N. 2004. Globalisation, economic geography and the strategy of multinational enterprises. Journal of International Business Studies, 35 (2): 81–98.CrossRefGoogle Scholar
  10. Chesbrough, H. 2003. Open innovation: The new imperative for creating and profiting from technology. Boston: Harvard Business School Press.Google Scholar
  11. CNBC. 2013. The “gold rush” for 3D printing patents,, accessed December 2013.
  12. Danneels, E. 2004. Disruptive technology reconsidered: A critique and research agenda. Journal of Product Innovation Management, 21 (4): 246–258.CrossRefGoogle Scholar
  13. Dedrick, J., Kraemer, K. L., & Linden, G. 2010. Who profits from innovation in global value chains? A study of the iPod and notebook PCs. Industrial and Corporate Change, 19 (1): 81–116.CrossRefGoogle Scholar
  14. Dicken, P. 2014. Global shift: Mapping the changing contours of the world economy. London: Sage Publications.Google Scholar
  15. Driscoll, C., & Starik, M. 2004. The primordial stakeholder: Advancing the conceptual consideration of stakeholder status for the natural environment. Journal of Business Ethics, 49 (1): 55–73.CrossRefGoogle Scholar
  16. Dunning, J. H. 1993. Multinational enterprises and the global economy. Reading, MA: Addison-Wesley.Google Scholar
  17. Dunning, J. H. 2001. The eclectic (OLI) paradigm of international production: Past, present and future. International Journal of the Economics of Business, 8 (2): 173–190.CrossRefGoogle Scholar
  18. The Economist. 2012. A third industrial revolution: Special Report: Manufacturing and innovation. The Economist, April 21.Google Scholar
  19. Ethical Filament Foundation. 2013., accessed December 2013.
  20. Flaherty, J. 2014. This dress is made from 3D printed plastic, but flows like fabric. Wired Magazine,, accessed February 2015.Google Scholar
  21. Foss, N. J., & Pedersen, T. 2004. Organizing knowledge processes in the multinational corporation: An introduction. Journal of International Business Studies, 35 (5): 340–349.CrossRefGoogle Scholar
  22. Gereffi, G., Humphrey, J., & Sturgeon, T. 2005. The governance of global value chains. Review of International Political Economy, 12 (1): 78–104.CrossRefGoogle Scholar
  23. Gershenfeld, N. 2008. Fab: The coming revolution on your desktop – From personal computers to personal fabrication. New York: Basic Books.Google Scholar
  24. Ghemawat, P. 2011. World 3.0 – Global prosperity and how to achieve it. Boston, MA: Harvard Business Review Press.Google Scholar
  25. Ghoshal, S., & Bartlett, C. 1998. The individualized corporations. London: Heinemann.Google Scholar
  26. Globerman, S., Roehl, T. W., & Standifird, S. 2001. Globalization and electronic commerce: Inferences from retail brokering. Journal of International Business Studies, 32 (4): 749–768.CrossRefGoogle Scholar
  27. Hobday, M. 1995. East Asian latecomer firms: Learning the technology of electronics. World Development, 23 (7): 1171–1193.CrossRefGoogle Scholar
  28. Hopkinson, N., Hague, R., & Dickens, P. (Eds) 2006. Rapid manufacturing: An industrial revolution for the digital age. New York: John Wiley & Sons.Google Scholar
  29. Huizingh, E. K. 2011. Open innovation: State of the art and future perspectives. Technovation, 31 (1): 2–9.CrossRefGoogle Scholar
  30. Hull, C. 1986. Apparatus for production of three-dimensional objects by stereolithography, US Patent 4,575,330.Google Scholar
  31. Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., & Bowyer, A. 2011. RepRap – The replicating rapid prototyper. Robotica, 29 (1): 177–191.CrossRefGoogle Scholar
  32. Jovanovic, B., & Rousseau, P. L. 2005. General purpose technologies. Handbook of Economic Growth. Working Paper 11093, 1: 1181–1224. National Bureau of Economic Research, Cambridge, MA.Google Scholar
  33. Kim, W. C., & Mauborgne, R. 2005. Blue ocean strategy: How to create uncontested market space and make the competition irrelevant. Boston: Harvard Business School Press.Google Scholar
  34. Kitson, P. J., Rosnes, M. H., Sans, V., Dragone, V., & Cronin, L. 2012. Configurable 3D-printed millifluidic and microfluidic “lab on a chip” reactionware devices. Lab on a Chip, 12 (18): 3267–3271.CrossRefGoogle Scholar
  35. Kitson, P. J., Symes, M. D., Dragone, V., & Cronin, L. 2013. Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification. Chemical Science, 4 (8): 3099–3103.CrossRefGoogle Scholar
  36. Kleinert, J. 2003. Growing trade in intermediate goods: Outsourcing, global sourcing, or increasing importance of MNE networks? Review of International Economics, 11 (3): 464–482.CrossRefGoogle Scholar
  37. Kreiger, M., Anzalone, G. C., Mulder, M. L., Glover, A., & Pearce, J. M. 2013. Distributed recycling of post-consumer plastic waste in rural areas. MRS Proceedings, Vol. 1492: 91–96.Google Scholar
  38. Kreiger, M. A., Mulder, M. L., Glover, A. G., & Pearce, J. M. 2014. Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3D printing filament. Journal of Cleaner Production, 70 (1): 90–96.CrossRefGoogle Scholar
  39. Kumar, N. 1994. Determinants of export orientation of foreign production by US multinationals: An inter-country analysis. Journal of International Business Studies, 25 (1): 141–156.CrossRefGoogle Scholar
  40. Lee, H., & Tang, C. 1997. Modelling the costs and benefits of delayed product differentiation. Management Science, 43 (1): 40–53.CrossRefGoogle Scholar
  41. Lipson, H., & Kurman, M. 2013. Fabricated: the new world of 3D printing. New York: John Wiley & Sons.Google Scholar
  42. Lussenburg, K., Van der Velden, N. M., Doubrovski, E. L., Geraedts, J. M. P., & Karana, E. 2014. Designing with 3D printed textiles: A case study of Material Driven Design. In iCAT 2014: Proceedings of the 5th International Conference on Additive Technologies, Vienna, Austria, 16–17 October.Google Scholar
  43. Maskell, P., Pedersen, T., Petersen, B., & Dick-Nielsen, J. 2007. Learning paths to offshore outsourcing – From cost reduction to knowledge seeking. Industry and Innovation, 14 (3): 239–257.CrossRefGoogle Scholar
  44. Mehrabi, M. G., Ulsoy, A. G., & Koren, Y. 2000. Reconfigurable manufacturing systems: Key to future manufacturing. Journal of Intelligent Manufacturing, 11 (4): 403–419.CrossRefGoogle Scholar
  45. METI. 2002. METI White Paper Year 2001, Database of the METI website,, accessed August 2014.
  46. Mikkola, J. H. 2003. Modularity, component outsourcing, and inter-firm learning. R&D Management, 33 (4): 439–454.CrossRefGoogle Scholar
  47. Moilanen, J., & Vadén, T. 2013. 3D printing community and emerging practices of peer production. First Monday, 18 (8) doi:10.5210/fm.v18i8.4271.Google Scholar
  48. Mudambi, R. 2008. Location, control and innovation in knowledge-intensive industries. Journal of Economic Geography, 8 (5): 699–725.CrossRefGoogle Scholar
  49. New York Times. 2012. How Zara grew into the world’s largest fashion retailer, November 9, accessed December 2015.
  50. Nyman, H. J., & Sarlin, P. 2013. From bits to atoms: 3D printing in the context of supply chain strategies. Working Paper, HICSS 2014: 4190–4199, Cornell University Library,, Ithaca, NY.Google Scholar
  51. Opam, K. 2014. Watch this 3D printer make pizza fit for astronauts. The Verge,, accessed February 2015.
  52. Oviatt, B. M., & McDougall, P. P. 1994. Toward a theory of international new ventures. Journal of International Business Studies, 25 (1): 45–64.CrossRefGoogle Scholar
  53. Pearce, J. M. 2014. Open-source lab: How to build your own hardware and reduce research costs. London: Elsevier.Google Scholar
  54. Pearce, J. M. 2015. Return on investment for open source hardware development. Science and Public Policy, advance online publication, June 20; doi:10.1093/scipol/scv034.Google Scholar
  55. Pine, B. J. 1993. Mass customization – The new frontier in business competition. Boston, MA: Harvard Business School Press.Google Scholar
  56. Piore, M., & Ruiz Duràn, C. 1998. Industrial development as a learning process: Mexican manufacturing and the opening to trade. In M. Kagami, J. Humphrey, & M. Piore (Eds), Learning, liberalisation and economic adjustment 191–241. Tokyo: Institute of Developing Economies.Google Scholar
  57. Porter, M. E. 1985. Competitive advantage – Creating and sustaining superior performance. New York: Free Press.Google Scholar
  58. Porter, M. E. 1986. Competition in global industries: A conceptual framework. In M. E. Porter (Ed), Competition in global industries 15–60. Cambridge, MA: Harvard Business School Press.Google Scholar
  59. 2012. RepRap family,, accessed December 2013.
  60. Ricardo, D. 1817. On the principles of political economy and taxation. London: John Murray.Google Scholar
  61. Scheithauer, U., Schwarzer, E., Richter, H. J., & Moritz, T. 2015. Thermoplastic 3D printing – An additive manufacturing method for producing dense ceramics. International Journal of Applied Ceramic Technology, 12 (1): 26–31.CrossRefGoogle Scholar
  62. Sells, E., Bailard, S., Smith, Z., & Bowyer, A. 2010. RepRap: The replicating rapid prototype: Maximizing customizability by breeding the means of production. In F. T. Piller, & M. M. Tseng (Eds), Handbook of research in mass customization and personalization: strategies and concepts, vol. 1 568–580. Hackensack, NJ: World Scientific.Google Scholar
  63. Smith, A. 1776. An inquiry into the nature and causes of the wealth of nations. London: George Routledge and Sons.CrossRefGoogle Scholar
  64. Symes, M. D., Kitson, P. J., Yan, J., Richmond, C. J., Cooper, G. J. T., Bowman, R. W., Vilbrandt, T., & Cronin, L. 2012. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nature Chemistry, 4 (5): 349–354.CrossRefGoogle Scholar
  65. Tushman, M. L., & Anderson, P. 1986. Technological discontinuities and organizational environments. Administrative Science Quarterly, 31 (3): 439–465.CrossRefGoogle Scholar
  66. UNCTAD. 2013. World investment report 2013: Global value chains: Investment and trade for development. New York: United Nations.Google Scholar
  67. Volberda, H. W. 1998. Building the flexible firm. Oxford: Oxford University Press.Google Scholar
  68. von Weizsäcker, C. 1993. The division of labour and market structure. Empirica, 20 (3): 241–244.CrossRefGoogle Scholar
  69. Wijnen, B., Anzalone, G. C., & Pearce, J. M. 2014. Open-source mobile water quality testing platform. Journal of Water, Sanitation and Hygiene for Development, 4 (3): 532–537.CrossRefGoogle Scholar
  70. Wittbrodt, B. T., Glover, A. G., Laureto, J., Anzalone, G. C., Oppliger, D., Irwin, J. L., & Pearce, J. M. 2013. Life-cycle economic analysis of distributed manufacturing with open-source 3D printers. Mechatronics, 23 (6): 713–726.CrossRefGoogle Scholar
  71. WTO. 2013. International Trade Statistics 2013. New York: World Trade Organization., accessed December 2015.
  72. WTO. 2015. Understanding the WTO: Developing countries. New York: World Trade Organization,, accessed December 2015.
  73. Yu, D., & Hang, C. C. 2011. Creating technology candidates for disruptive innovation: Generally applicable R&D strategies. Technovation, 31 (8): 401–410.CrossRefGoogle Scholar
  74. Zhang, C., Anzalone, N. C., Faria, R. P., & Pearce, J. M. 2013. Open-source 3D-printable optics equipment. PLoS ONE, 8 (3): e59840.CrossRefGoogle Scholar

Copyright information

© Academy of International Business 2016

Authors and Affiliations

  • André O Laplume
    • 1
  • Bent Petersen
    • 2
  • Joshua M Pearce
    • 3
  1. 1.School of Business and Economics, Michigan Technological UniversityHoughtonUSA
  2. 2.Copenhagen Business SchoolFrederiksbergDenmark
  3. 3.Department of Materials Science & Engineering and Department of Electrical & Computer EngineeringMichigan Technological UniversityHoughtonUSA

Personalised recommendations