Advertisement

Agricultural Productivity, Health and Public Expenditures in Sub-Saharan Africa

  • Summer L Allen
  • John Ulimwengu
Original Article

Abstract

National governments are forced to make difficult budget allocations regarding the provision of various social services. The wide-ranging effects of these choices are often not fully understood. In particular, farm-level decisions regarding investments and input allocation are likely dependent on government allocations; not accounting for these may bias the estimation of marginal productivity of agricultural inputs. In this article, we capture the impact of social expenditures on health outcomes through a structural equation model, and use a state variable approach to model marginal productivity of agricultural inputs as a function of health outcomes. This study uses agricultural production data from FAO, annual precipitation on agricultural land (compiled by USDA) and IFPRI’s unique panel of public expenditure data. It covers nine countries in Sub-Saharan Africa from 1990 until 2002. The results show that there is a positive relationship between health expenditures and the marginal productivity of agricultural inputs.

Keywords

agricultural productivity state variable health expenditures water social expenditures Sub-Saharan Africa 

Abstract

Les gouvernements nationales sont toujours obliges à prendre des choix difficiles dans l’allocation des budgets pour la provision de services sociaux. La gamme d’effets que ces choix suscitent n’est pas complètement comprise. Spécifiquement, les choix au niveau de la ferme, en matière d’investissements et d’allocation d’apports, dépendent des allocations du gouvernement ; ne pas prendre ceci en compte peut préjuger les estimations de productivité marginale des apports agriculturals. Dans cette étude, nous utilisons une modèle d’équation structurale pour analyser l’impact des dépenses sociales sur la sante, et un approche variable d’état pour étudier la productivité marginale des apports agriculturals en fonction des données sur la sante. Cette étude utilise les donnes FAO sur la production agriculturale, données USDA sur la précipitation annuelle en terrains agricoles, et les donnes uniques des panels IFPRI sur les dépenses publiques. On étude neuf pays en Afrique sub-saharienne entre 1990 et 2002. Les résultats montrent que il y a une relation positive ente les dépenses sur la santé et la productivité marginale des apports agriculturals.

References

  1. Allen, S., Badiane, O., Sene, L. and Ulimwengu, J. (2014) Government expenditures, health outcomes and marginal productivity of agricultural inputs: The case of Tanzania. Journal of Agricultural Economics 65 (3): 637–662.CrossRefGoogle Scholar
  2. Amouzou, A. and Hill, K. (2004) Child mortality and socioeconomic status in Sub-Saharan Africa. African Population Studies 19 (1): 1–11.Google Scholar
  3. Anderson, E., de Renzio, P. and Levy, S. (2006) The Role of Public Investment in Poverty Reduction: Theories, Evidence and Methods. London: Overseas Development Institute. Working Paper 263.Google Scholar
  4. Anyanwu, J.C. and Erhijakpor, A.E.O. (2009) Health expenditures and health outcomes in Africa. African Development Review 21 (2): 400–433.CrossRefGoogle Scholar
  5. Baldacci, E., Clements, B., Gupta, S. and Cui, Q. (2004) Social Spending, Human Capital and Growth in Developing Countries: Implications for Achieving the MDGs. Washington, DC: IMF Working Paper 04/217, https://www.imf.org/external/pubs/ft/wp/2004/wp04217.pdf.
  6. Baldacci, E., Guin-Siu, M.T. and de Mello, L. (2003) More on the effectiveness of public spending on health care and education: A covariance structure model. Journal of International Development 15 (6): 709–725.CrossRefGoogle Scholar
  7. Bhattacharjee, J.P. (1955) Resource use and productivity in world agriculture. Journal of Farm Economics 37 (1): 57–71.CrossRefGoogle Scholar
  8. Block, S. (2010) The Decline and Rise of Agricultural Productivity in Sub-Saharan Africa Since 1961. Cambridge, MA: National Bureau of Economic Research (NBER) Working Paper 16481, http://www.nber.org/papers/w16481.
  9. Bloom, D.E., Canning, D. and Sevilla, J. (2004) The effect of health on economic growth: A production function approach. World Development 32 (1): 1–13.CrossRefGoogle Scholar
  10. Bollen, K.A. (1989) Structural Equations with Latent Variables. New York: Wiley.CrossRefGoogle Scholar
  11. Calderón, C. and Servén, L. (2004) The Effects of Infrastructure Development on Growth and Income Distribution. Central Bank of Chile Working Papers No. 270. Santiago, Chile.Google Scholar
  12. Food and Agriculture Organization (FAO) (2014) GAEZ. Rome, Italy: FAO, http://faostat.fao.org/site/575/DesktopDefault.aspx?PageID=575#ancor, accessed 15 April 2014.
  13. Fulginiti, L.E. and Perrin, R.K. (1993) Prices and productivity in agriculture. The Review of Economics and Statistics 75 (3): 471–482.CrossRefGoogle Scholar
  14. Gomanee, K., Morrissey, O., Mosley, P. and Vershorr, A. (2003) Aid, Pro-Poor Government Spending and Welfare. Nottingham, UK: University of Nottingham. CREDIT Research Paper 3, http://ssrn.com/abstract=412244.
  15. Gommes, R. (1999) Production Variability and Losses (SD Dimensions Specials) Rome, Italy: Food and Agriculture Organization.Google Scholar
  16. Gupta, S., Verhoeven, M. and Tiongson, E.R. (2002) The effectiveness of government spending on education and health care in developing and transition economies. European Journal of Political Economy 18: 717–737.CrossRefGoogle Scholar
  17. Hayami, Y. and Ruttan, V.W. (1985) Agricultural Development: An International Perspective. Baltimore, MD: Johns Hopkins University Press.Google Scholar
  18. International Food Policy Research Institute (IFPRI) (2013) Statistics on Public Expenditure for Economic Development. Development Strategy and Governance Division. Washington DC: IFPRI, http://www.ifpri.org/book-39/ourwork/programs/priorities-public-investment/geographic-focus, accessed 15 April 2014.
  19. Islam, A. and López, R. (2011) Fiscal Spending for Economic Growth in the Presence of Imperfect Markets. London, UK: Centre for Economic Policy Research Discussion Paper, http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=8709.
  20. Jöreskog, K.G. (1973) A general method for estimating a linear structural equation system. In: A.S. Goldberger and O.D. Duncan (eds.) Structural Equation Models in the Social Sciences. New York: Academic Press, pp. 85–112.Google Scholar
  21. Kalaitzandonakes, N.G. and Dunn, E.G. (1995) Technical efficiency, managerial ability and farmer education in Guatemalan corn production: A latent variable analysis. Agricultural and Resource Economics Review 24 (1): 36–46.CrossRefGoogle Scholar
  22. Laird, N.M. and Ware, J.H. (1982) Random-effects models for longitudinal data. Biometrics 38 (4): 963–974.CrossRefGoogle Scholar
  23. Maddison, D., Manley, M. and Kurukulasuriya, P. (2006) The Impact of Climate Change on African Agriculture: A Ricardian Approach. Pretoria, South Africa: Centre for Environmental Economics and Policy in Africa. CEEPA Discussion Paper No. 15.Google Scholar
  24. McNamara, P.E., Ulimwengu, J.M. and Leonard, K.L. (2010) Do Health Investments Improve Agricultural Productivity? Washington, DC: IFPRI Discussion Paper 01012, http://www.ifpri.org/sites/default/files/publications/ifpridp01012.pdf.Google Scholar
  25. Mogues, F., Fan, S. and Benin, D. (2015) Public Investments in and for Agriculture. European Journal of Development Research 27 (3): 337–352.CrossRefGoogle Scholar
  26. Mosley, P., Hudson, J. and Verschoor, A. (2004) Aid, poverty reduction and the ‘new conditionality’. Economic Journal 2 (496): F217–F243.CrossRefGoogle Scholar
  27. Mundlak, Y. (1988) Endogenous technology and the measurement of productivity. In: S.M. Capalbo and J.M. Antle (eds.) Agricultural Productivity: Measurement & Explanation. Washington DC: Resources for the Future, pp. 316–331.Google Scholar
  28. Mundlak, Y., Butzer, R. and Larson, D.F. (2008) Heterogeneous Technology and Panel Data: The Case of the Agricultural Production Function. Washington DC: World Bank. Policy Research Working Paper Series 4536.Google Scholar
  29. Mundlak, Y., Larson, D. and Butzer, R. (1997) The Determinants of Agricultural Production: A Cross-Country Analysis. Washington DC: World Bank. Policy Research Working Paper Series 1827.Google Scholar
  30. Nixon, J. and Ulmann, P. (2006) The relationship between health care expenditure and health outcomes: Evidence and caveats for a causal link. European Journal of Health Economics 7 (1): 7–18.CrossRefGoogle Scholar
  31. O’Gorman, M. and Pandey, M. (2010) Cross-country disparity in agricultural productivity: Quantifying the role of modern seed adoption. Journal of Development Studies 46 (10): 1767–1785.CrossRefGoogle Scholar
  32. Pitt, M. and Rosenzweig, M.R. (1986) Agricultural prices, food consumption, and the health and productivity of farmers. In: I. Singh, L. Squire and J. Strauss (eds.) Agricultural Household Models: Extensions, Applications, and Policy. Washington DC: The World Bank, pp. 153–182.Google Scholar
  33. Prüss-Üstün, A., Bos, R., Gore, F. and Bartram, J. (2008) Safer Water, Better Health: Costs, Benefits and Sustainability of Interventions to Protect and Promote Health. Geneva, Switzerland: World Health Organization.Google Scholar
  34. Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2004) Generalized multilevel structural equation modeling. Psychometrika 69 (2): 167–190.CrossRefGoogle Scholar
  35. Thirtle, C., Lin, L. and Piesse, J. (2003) The Impact of Research Led Agricultural Productivity Growth on Poverty Reduction in Africa, Asia and Latin America. Proceedings of the 25th International Conference of Agricultural Economists (IAAE); 16–22 August 2003, Durban, South Africa.Google Scholar
  36. Ulimwengu, J. (2009) Farmer’s health and agricultural productivity in rural Ethiopia. African Journal of Agricultural and Resource Economics 3 (2): 83–100.Google Scholar
  37. UN HABITAT (2011) Infrastructure for Economic Development and Poverty Reduction in Africa. The Gobal Urban Economic Dialogue Series, UN-Habitat Nairobi.Google Scholar
  38. Verbeke, G. and Molenberghs, G. (2000) Linear Mixed Models for Longitudinal Data Springer Series in Statistics. New York: Springer-Verlag.Google Scholar
  39. Williams, R. and Breneman, V. (2009) Global agricultural land precipitation. USDA – Economic research service, Analysis of the monthly climatic data from the Climate Research Unit (CRU) at the University of East Anglia, http://badc.nerc.ac.uk/data/cru/.
  40. World Bank (2014) World Development Indicators 2014. Washington DC: World Bank, http://data.worldbank.org/data-catalog/world-development-indicators, accessed 15 April 2014.
  41. Yesuf, M., Di Falco, S., Deressa, T., Ringler, C. and Kohlin, G. (2008) The Impact of Climate Change and Adaptation of Food Production in Low-Income Countries. Washington DC: IFPRI. IFPRI Discussion Paper 00828.Google Scholar
  42. You, L., Wood, S. and Wood-Sichra, U. (2009) Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach. Agricultural Systems 99 (2–3): 126–140.CrossRefGoogle Scholar
  43. Yuan, K.-H. and Bentler, P.M. (2007) Structural equation modeling. In: C. Rao and S. Sinharay (eds.) Handbook of Statistics: Psychometrics. Vol. 26 of Handbook of Statistics. Oxford, UK: Elsevier, Chapter 10.Google Scholar

Copyright information

© European Association of Development Research and Training Institutes 2015

Authors and Affiliations

  1. 1.International Food Policy Research InstituteWashington DCUSA

Personalised recommendations