, Volume 6, Issue 3, pp 279–298 | Cite as

Epigenetics: Embedded bodies and the molecularisation of biography and milieu

  • Jörg Niewöhner
Original Article


The molecular biological field of epigenetics has recently attracted attention not only in biology, but also in the broader scientific community and the popular press. Commentators paint a very heterogeneous picture with some arguing that epigenetics is nothing but another aspect of gene regulation, and others enthusiastically proclaiming a paradigmatic shift in developmental biology. This article analyses a particular approach to environmental epigenetics – a subfield of epigenetics that is central to the recent excitement. The focus lies on an ethnographic analysis of research practices that enable a particular lab group to study the impact of different levels of context, for example, changes in the social and material environment, on epigenetic modification and thus phenotypic variation. The article argues that changes in the practice of doing epigenetic biology contribute to a molecularisation of biography and milieu, suggest the configuration of somatic sociality and produce a different concept of the body: the embedded body. This article concludes with a brief discussion of customary biology as a potential new research agenda at the interface of material and social inquiry.


epigenetics molecularisation ethnography embedded body biosociality 



The work for this article has been supported by the German Federal Ministry of Education and Research, grant no. 01GWS051. I thank Stefan Beck, the members of the Laboratory: Social Anthropology of Science and Technology at Humboldt University and the members of the Department of Social Studies of Medicine, McGill University, Montreal, for many productive discussions and critical commentary on countless earlier versions of this article. I also thank three anonymous reviewers and the editors for critical and constructive commentary and much appreciated help in straightening the argument.


  1. Aldridge, S. (2010) Epigenetics offers strategies for new drugs. Genetic Engineering & Biotechnology News 30 (3): 26.Google Scholar
  2. Barad, K. (1998) Getting real: Technoscientific practices and the materialization of reality. Differences: A Journal of Feminist Cultural Studies 10: 88–128.Google Scholar
  3. Beck, S. and Niewöhner, J. (2006) Somatographic investigations across levels of complexity. BioSocieties 1 (2): 219–227.CrossRefGoogle Scholar
  4. Bentley, A.F. (1941) The Human Skin: Philosophy's last line of defense. Philosophy of Science 8: 1–19.CrossRefGoogle Scholar
  5. Bowker, G.C. and Star, S.L. (1999) Sorting Things Out: Classification and Its Consequences. Cambridge, MA: MIT Press.Google Scholar
  6. Brown, N. and Michael, M. (2003) A sociology of expectations: Retrospecting prospects and prospecting retrospects. Technology Analysis & Strategic Management 15 (1): 3–18.CrossRefGoogle Scholar
  7. Business Insights. (2009) Innovations in Epigenetics: Advances in Technologies, Diagnostics & Therapeutics. Business Insights: Management Report,, accessed 2 March 2011.Google Scholar
  8. Butcher, L.M. and Beck, S. (2008) Future impact of integrated high-throughput methylome analyses on human health and disease. Journal of Genetics and Genomics 35 (7): 391–401.CrossRefGoogle Scholar
  9. Cambrosio, A., Keating, P., Bourret, P., Mustar, P. and Rogers, S. (2009) Genomic platforms and hybrid formations. In: P. Atkinson, P. Glasner and M. Lock (eds.) Handbook of Genetics and Society: Mapping the New Genomic Era. London: Routledge.Google Scholar
  10. Cannon, W.B. (1923) Organization for physiological homeostasis. Physiological Reviews IX (3): 399–431.Google Scholar
  11. Daston, L. (2002) I. The morality of natural orders: The power of medea & II. Nature's customs versus nature's laws. Tanner Lectures on Human Values delivered at Harvard University,, accessed 2 March 2011.
  12. Denenberg, V.H. and Rosenberg, K.M. (1967) Nongenetic transmission of information. Nature 216 (5115): 549–550.CrossRefGoogle Scholar
  13. Esteller, M. (2008) Epigenetics in evolution and disease. Lancet 372: S90–S96.CrossRefGoogle Scholar
  14. Fassin, D. (2009) Another politics of life is possible. Theory Culture & Society 26 (5): 44–60.CrossRefGoogle Scholar
  15. Fox Keller, E. (2006) Is ‘epigenetic inheritance’ a contradiction in terms? Paper presented at the Zwischen ‘Vererbung erworbener Eigenschaften’ und Epigenetik, Berlin.Google Scholar
  16. Franklin, S. (2000) Life itself: Global nature and the genetic imaginary. In: S. Franklin, C. Lury and J. Stacey (eds.) Global Nature, Global Culture. London: Sage Publications.Google Scholar
  17. Fujimura, J.H. (1992) Crafting science: Standardized packages, boundary objects, and ‘translation’. In: A. Pickering (ed.) Science as Practice and Culture. Chicago, IL: University of Chicago Press.Google Scholar
  18. Furuhashi, H. et al (2010) Trans-generational epigenetic regulation of C. elegans primordial germ cells. Epigenetics & Chromatin 3 (1): 15.CrossRefGoogle Scholar
  19. Geertz, C. (1973) Thick description: Toward an interpretive theory of culture. In: C. Geertz (ed.) The Interpretation of Cultures: Selected Essays. New York: Basic Books, pp. 3–30.Google Scholar
  20. Griesemer, J. (2002) What is “epi” about epigenetics? Annals of the New York Academy of Sciences 981: 97–110.CrossRefGoogle Scholar
  21. Haraway, D.J. (1991) Simians, Cyborgs, and Women: The Reinvention of Nature. New York: Routledge.Google Scholar
  22. Ingold, T. (1990) An anthropologist looks at biology. Man 25 (2): 208–229.CrossRefGoogle Scholar
  23. Ingold, T. (2000) The Perception of the Environment: Essays on Livelihood, Dwelling & Skill. London; New York: Routledge.CrossRefGoogle Scholar
  24. Ingold, T. (2007) The trouble with ‘evolutionary biology’. Anthropology Today 23 (2): 13–17.CrossRefGoogle Scholar
  25. Jablonka, E. and Lamb, M.J. (2002) The changing concept of epigenetics. Annals of the New York Academy of Sciences 981: 82–96.CrossRefGoogle Scholar
  26. Jefferis, B.J.M.H., Power, C. and Hertzman, C. (2002) Birth weight, childhood socioeconomic environment, and cognitive development in the 1958 British birth cohort study. British Medical Journal 325 (7359): 305–308.CrossRefGoogle Scholar
  27. Landecker, H. (2010) Essen als exposition. Epigenetik der Ernährung und die Molekularisierung der Umwelt. In: S. Bauer, C. Bischof, S.G. Haufe, S. Beck and L. Scholze-Irrlitz (eds.) Essen in Europa. Kulturelle ‘Rückstände’ in Nahrung und Körper. Bielefeld, Germany: Transcript.Google Scholar
  28. Latour, B. and Woolgar, S. (1986) Laboratory Life: The Construction of Scientific Facts, 2nd edn. Princeton, NJ: Princeton University Press.Google Scholar
  29. Lippman, A. (1991) Prenatal genetic testing and screening: Constructing needs and reinforcing inequities. American Journal of Law and Medicine 17: 15–50.Google Scholar
  30. Lock, M. (1993) Encounters with Aging: Mythologies of Menopause in Japan and North America. Berkeley, CA: University of California Press.Google Scholar
  31. Lock, M. (2001) The tempering of medical anthropology: Troubling natural categories. Medical Anthropology Quarterly 15 (4): 478–492.CrossRefGoogle Scholar
  32. Madhani, H.D. et al (2008) Epigenomics: A roadmap, but to where? Science 322 (5898): 43b–44b.CrossRefGoogle Scholar
  33. McEwen, B. (1998) Protective and damaging effects of stress mediators. New England Journal of Medicine 338 (3): 171–179.CrossRefGoogle Scholar
  34. McEwen, B.S. (2008) Understanding the potency of stressful early life experiences on brain and body function. Metabolism 57 (2): S11–S15.CrossRefGoogle Scholar
  35. McGowan, P.O. et al (2008) Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLoS ONE 3 (5): e2085.CrossRefGoogle Scholar
  36. McGowan, P.O. et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience 12 (3): 342–348.CrossRefGoogle Scholar
  37. McGowan, P.O. and Szyf, M. (2010) The epigenetics of social adversity in early life: Implications for mental health outcomes. Neurobiology of Disease 39 (1): 66–72.CrossRefGoogle Scholar
  38. Melby, M.K., Lock, M. and Kaufert, P. (2005) Culture and symptom reporting at menopause. Human Reproduction Update 11 (5): 495–512.CrossRefGoogle Scholar
  39. Mol, A. (2002) The Body Multiple: Ontology in Medical Practice. Durham, NC: Duke University Press.CrossRefGoogle Scholar
  40. Moss, L. (2002) From representational preformationism to the epigenesis of openness to the world? Annals of the New York Academy of Sciences 981 (1): 219–229.CrossRefGoogle Scholar
  41. Müller-Wille, S. and Rheinberger, H.-J. (2009) Das Gen im Zeitalter der Postgenomik – Eine wissenschaftshistorische Bestandsaufnahme. Frankfurt, Germany: Suhrkamp.Google Scholar
  42. Murrell, A., Rakyan, V.K. and Beck, S. (2005) From genome to epigenome. Human Molecular Genetics 14 (1): R3–R10.CrossRefGoogle Scholar
  43. Neumann-Held, E.M. and Rehmann-Sutter, C. (2006) Genes in Development: Re-reading the Molecular Paradigm. Durham, NC: Duke University Press.CrossRefGoogle Scholar
  44. Niewöhner, J. (2008) Die zeitlichen Dimensionen von Fett – Körperkonzepte zwischen Prägung und Lebensstil. In: J. Niewöhner, C. Kehl and S. Beck (eds.) Wie geht Kultur unter die Haut? Emergente Praxis am Schnittfeld von Medizin, Sozial- und Lebenswissenschaften. Bielefeld, Germany: transcript, pp. 111–140.CrossRefGoogle Scholar
  45. Niewöhner, J. (2011) Traveling through borderlands – Three enactments of cardiovascular phenomena. In: M. Döring and R. Kollek (eds.) Emerging Diseases. Bielefeld, Germany: Transcript.Google Scholar
  46. Niewöhner, J., Kehl, C. and Beck, S. (eds.) (2008) Wie geht Kultur unter die Haut? Emergente Praxis am Schnittfeld von Medizin, Sozial- und Lebenswissenschaften. Bielefeld, Germany: Transcript.CrossRefGoogle Scholar
  47. Novas, C. and Rose, N. (2000) Genetic risk and the birth of the somatic individual. Economy and Society 29 (4): 485–513.CrossRefGoogle Scholar
  48. Parsons, T. and Kroeber, A.L. (1958) The concepts of culture and of social systems. American Sociological Review 23: 582–583.CrossRefGoogle Scholar
  49. Rabinow, P. (1992) Artificiality and enlightenment: From sociobiology to biosociality. In: J. Crary and S. Kwinter (eds.) Incorporations. New York: MIT Press, pp. 234–252.Google Scholar
  50. Rheinberger, H.-J. (1997) Toward a History of Epistemic Things: Sythesizing Proteins in the Test Tube. Stanford, CA: Stanford University Press.Google Scholar
  51. Rheinberger, H.-J. (2000) Gene concepts. Fragments from the perspective of molecular biology. In: P.J. Beurton, R. Falk, and H.-J. Rheinberger (eds.) The Concept of the Gene in Development and Evolution: Historical and Epistemological Perspectives. Cambridge, UK: Cambridge University Press, pp. 219–239.CrossRefGoogle Scholar
  52. Roepstorff, A., Niewöhner, J. and Beck, S. (2010) Enculturing brains through patterned practices. Neural Networks 23 (8–9): 1051–1059.CrossRefGoogle Scholar
  53. Rose, N. (2001) The politics of life itself. Theory, Culture & Society 18 (6): 1–30.CrossRefGoogle Scholar
  54. Rose, N. (2007) The Politics of Life Itself. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  55. Rubin, B.P. (2009) Changing brains: The emergence of the field of adult neurogenesis. BioSocieties 4 (4): 407–424.CrossRefGoogle Scholar
  56. Sahlins, M. (1996) The sadness of sweetness: The native anthropology of western cosmology. Current Anthropology 37 (3): 395–428.CrossRefGoogle Scholar
  57. Selye, H. (1956) The Stress of Life. New York: McGraw Hill.Google Scholar
  58. Stolleis, M. (1990) Staat und Staatsraison in der frühen Neuzeit: Studien zur Geschichte des öffentlichen Rechts. Frankfurt, Germany: Suhrkamp.Google Scholar
  59. Timmermans, S. and Haas, S. (2008) Towards a sociology of disease. Sociology of Health & Illness 30 (5): 659–676.CrossRefGoogle Scholar
  60. Tolman, E.C. (1948) Cognitive maps in rats and men. Psychological Review 55: 189–208.CrossRefGoogle Scholar
  61. Tzschentke, B. and Plagemann, A. (2006) Imprinting and critical periods in early development. Worlds Poultry Science Journal 62 (4): 626–637.CrossRefGoogle Scholar
  62. van Speybroeck, L. (2000) The organism: A crucial genomic context in molecular epigenetics? Theory in Biosciences 119 (3–4): 187–208.CrossRefGoogle Scholar
  63. Waddington, C.H. (1957) The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology. London: Allen & Unwin.Google Scholar
  64. Waterland, R.A. and Jirtle, R.L. (2003) Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Molecular and Cellular Biology 23 (15): 5293–5300.CrossRefGoogle Scholar
  65. Waterland, R.A. and Jirtle, R.L. (2004) Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20 (1): 63–68.CrossRefGoogle Scholar
  66. Waterland, R.A., Travisano, M. and Tahiliani, K.G. (2007) Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. Journal of the Federation of American Societies for Experimental Biology 21 (12): 3380–3385.CrossRefGoogle Scholar
  67. Weaver, I.C.G. et al (2004) Epigenetic programming by maternal behavior. Nature Neuroscience 7 (8): 847–854.CrossRefGoogle Scholar
  68. Whitelaw, N.C. and Whitelaw, E. (2008) Transgenerational epigenetic inheritance in health and disease. Current Opinion in Genetics & Development 18 (3): 273–279.CrossRefGoogle Scholar
  69. Wilkins, J.F. (2005) Genomic imprinting and methylation: Epigenetic canalization and conflict. Trends in Genetics 21 (6): 356–365.CrossRefGoogle Scholar

Copyright information

© The London School of Economics and Political Science 2011

Authors and Affiliations

  • Jörg Niewöhner
    • 1
  1. 1.Department of European EthnologyLaboratory: Social Anthropology of Science & Technology, Center for Integrative Life Sciences, Humboldt University BerlinBerlinGermany

Personalised recommendations