Annals of Forest Science

, Volume 65, Issue 2, pp 208–208 | Cite as

The successional status of sugar maple (Acer saccharum), revisited

  • Philippe Nolet
  • Sylvain Delagrange
  • Daniel Bouffard
  • Frédérik Doyon
  • Eric Forget
Original Article

Abstract

Two complementary experimental designs at two contrasting scales (landscape/long term; individual tree/short term) were used for an in-depth evaluation of the successional status of sugar maple (AS: Acer saccharum Marsh.). First, forest disturbances during the 20th century and composition were mapped for two landscapes in the Du Lièvre watershed of southern Quebec. Our results show that, as well as dominating stands in the absence of fire, AS often rapidly developed dominance after fire, especially in the south of our study area. Similarly, a majority of AS-dominated stands clearcut in 1928 continued to be AS-dominated 60 years later. Second, we examined AS seedlings planted under two very contrasting light regimes. AS seedlings showed a combination of traits particularly adapted to tolerate shade under a low light regime. However, owing to a surprisingly high phenotypic plasticity, AS also exhibited efficient development under high light. This suggests the classification of AS as a late-successional species should indeed be revised and that generalist or trans-successional would be a more appropriate designation for this species. We discuss the ramifications of such a status revision, with an emphasis on the implications for its silviculture.

landscape phenotypic plasticity scale of organization succession sugar maple 

Révision du statut successionnel de l’érable à sucre (Acer saccharum)

Résumé

Deux dispositifs expérimentaux complémentaires, établis à deux échelles différentes (paysage/long terme et individu/court terme), ont été utilisés afin de mieux évaluer le statut successionnel de l’érable à sucre (AS : Acer saccharum Marsh.). D’abord, une cartographie des perturbations et de la composition forestière au cours du 20e siècle a été réalisée pour deux paysages du bassin du Lièvre dans le Sud du Québec. Nos résultats ont démontré qu’en plus de dominer les peuplements en absence de perturbation du couvert, AS établissait souvent et rapidement une dominance dans les peuplements ayant brûlé, et cela, particulièrement dans le paysage le plus au sud de l’air d’étude. De la même façon, une majorité de peuplements dominés par AS et coupés à blanc en 1928 s’est révélée encore dominée par AS à peine 60 ans après coupe. Ensuite, en réalisant le suivi de semis plantés sous deux régimes lumineux très différents, AS a montré un ensemble de caractéristiques particulièrement adaptées à une bonne tolérance à l’ombre. Cependant, grâce à une étonnante plasticité phénotypique, AS a aussi démontré un développement compétitif sous des régimes lumineux plus élevés. L’ensemble de ces résultats suggère donc une remise en question du statut de fin de succession de AS, lequel répondrait mieux à une appellation d’espèce généraliste ou trans-successionnelle. Les implications d’une telle révision sur la sylviculture de cette essence sont discutées.

paysage plasticité phénotypique échelle d’organisation succession érable à sucre 

References

  1. [1]
    Arii K., Lechowicz M.J., The influence of overstory trees and abiotic factors on the sapling community in an old growth Fagus-Acer forest, Ecoscience 9 (2002) 386–396.Google Scholar
  2. [2]
    Baker F.S., A revised tolerance table, J. For. 47 (1949) 179–181.Google Scholar
  3. [3]
    Barbour M.G., Burk J.H., Pitts W.D., Terrestrial Plant Ecology, 2nd Ed., The Benjamin /Cummings Publishing Company, Inc., Menlo Park, CA, USA 1987, 634 p.Google Scholar
  4. [4]
    Bazzaz F.A., The physiological ecology of plant succession, Ann. Rev. Ecol. Syst. 10 (1979) 351–371.CrossRefGoogle Scholar
  5. [5]
    Bazzaz F.A., Carlson R.W., Photosynthetic acclimation to variability in the light environment of early and late successional plants, Oecologia 54 (1982) 313–316.CrossRefGoogle Scholar
  6. [6]
    Bonal D., Born C., Brechet C., Coste S.M.E., Roggy J.-C., Guehl J.-M., The successional status of tropical rainforest tree species is associated with differences in leaf carbon isotope discrimination and functional traits, Ann. For. Sci 64 (2007) 169–176.CrossRefGoogle Scholar
  7. [7]
    Bragg D.C., Roberts D.W., Crow T.R., A hierarchical approach for simulating northern forest dynamics, Ecol. Model. 173 (2004) 31–94.CrossRefGoogle Scholar
  8. [8]
    Brisson J., Bergeron Y., Bouchard A., Les successions secondaires sur sites mésiques dans le Haut-Saint-Laurent, Québec, Canada, Can. J. Bot. 66 (1988) 1192–1203.CrossRefGoogle Scholar
  9. [9]
    Canham C.D., Growth and canopy architecture of shade tolerant trees: response to canopy gaps, Ecology 69 (1988) 786–795.CrossRefGoogle Scholar
  10. [10]
    Cash D.W., Adger W.N., Berkes F., Garden P., Lebel L., Olsson P., Pritchard L., Young O., Scale and cross-scale dynamics: Governance and information in a multilevel world, Ecol. Soc. 11 (2006) [online]: http://www.ecologyand society.org/vol1l/iss2/art8/.Google Scholar
  11. [11]
    Castelli J.P., Brenda B.C., Sullivan J.J., Latham R.E., Early understory succession following catastrophic wind damage in a deciduous forest, Can. J. For. Res. 29 (1999) 1997–2002.CrossRefGoogle Scholar
  12. [12]
    Claveau Y., Messier C., Comeau P.G., Interacting influence of light and size on aboveground biomass distribution in sub-boreal conifer saplings with contrasting shade tolerance, Tree Physiol. 25 (2005) 373–384.PubMedGoogle Scholar
  13. [13]
    Connell J.H., Slatyer R.O., Mechanisms of succession in natural communities and their role in community stability and organization, Am. Nat. 111 (1977) 1119–1144.CrossRefGoogle Scholar
  14. [14]
    Cooper S.D., Diehl S., Kratz K., Sarnelle O., Implications of scale for patterns and processes in stream ecology, Aust. J. Ecol. 23 (1998) 27–40.CrossRefGoogle Scholar
  15. [15]
    Crow T.R., Buckley D.S., Nauertz E.A., Zasada J.C., Effects on management on the composition structure of northern hardwood forests in upper Michigan, For. Sci. 48 (2002) 129–145.Google Scholar
  16. [16]
    Delagrange S., Messier C., Lechowicz M.J., Dizengremel P., Physiological, morphological and allocational plasticity in understory deciduous trees: Importance of individual size and light availability, Tree Physiol. 24 (2004) 775–784.PubMedGoogle Scholar
  17. [17]
    Drever C.R., Messier C., Bergeron Y., Doyon F., Fire and canopy species composition in the Great Lakes-St. Lawrence forest of Temiscamingue, Québec, For. Ecol. Manage. 231 (2006) 27–37.CrossRefGoogle Scholar
  18. [18]
    Dunn C.P., Guntensperger G.R., Dorney J.R., Catastrophic wind disturbance in an old-growth hemlock-hardwood forest, Can. J. Bot. 61 (1983) 211–217.CrossRefGoogle Scholar
  19. [19]
    Elliot K.J., Boring L.R., Swank W.T., Haines B.R., Successional changes in plant species diversity and composition after clearcutting a Southern Appalachian watershed, For. Ecol. Man. 92 (1997) 67–85.CrossRefGoogle Scholar
  20. [20]
    Erdmann G.G., Betula alleghaniensis Britton, Yellow Birch, in: Silvics of North America: Hardwoods, USDA Forest service, Washington, USA, 1990, pp. 133–147.Google Scholar
  21. [21]
    Forcier L.K., Reproductive strategies and the co-occurrence of climax tree species, Science 189 (1975) 808–811.PubMedCrossRefGoogle Scholar
  22. [22]
    Franklin J.F., Spies T.A., van PeltR., Carey A.B., Thornburgh D.A., Breg D.R., Lindenmaye D.B., Harmon M.E., Keeton W.S., Shaw D.C., Bible K., Chen J., Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manage. 155 (2002) 399–423.CrossRefGoogle Scholar
  23. [23]
    Givnish T.J., Adaptation to sun and shade: A whole plant perspective, Aust. J. Plant Physiol. 15 (1988) 63–92.CrossRefGoogle Scholar
  24. [24]
    Givnish T.J., Plant stem: Biochemical adaptation for energy capture and influence on species distributions, in: Plant stems: Physiology and functional morphology, Academic press, San Diego, USA, 1995, pp. 3–49.Google Scholar
  25. [25]
    Godman R.M., Yawney H.W., Tubbs C.H., Acer saccharum March, Sugar Maple, in: Silvics of North America: Hardwoods, USDA, Forest service, Washington, USA, 1990, pp. 78–91.Google Scholar
  26. [26]
    Godman R.M., Books D.J., Influence of stand density on stem quality in pole-size northern hardwoods, USDA, Forest Service, North Central Forest Experiment Station, St. Paul, MN, USA, Research Paper NC-54, 1971, 7 p.Google Scholar
  27. [27]
    Horn H.S., The ecology of secondary succession, Ann. Rev. Ecol. Syst. 5 (1974) 25–37.CrossRefGoogle Scholar
  28. [28]
    Kimmins J.P., Forest ecology: A foundation for sustainable management, 2nd ed., Prentice Hall Inc., New Jersey, USA, 1997, 596 p.Google Scholar
  29. [29]
    Kobe R.K., Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth, Oikos 80 (1997) 226–233.CrossRefGoogle Scholar
  30. [30]
    Kruger E.L., Reich P.B., Responses of hardwood regeneration to fire in mesic forest openings. II. Leaf gas exchange, nitrogen concentration, and water status, Can. J. For. Res. 27 (1997) 1832–1840.CrossRefGoogle Scholar
  31. [31]
    Lei T.T., Lechowicz M.J., Shade adaptation and shade tolerance in saplings of three Acer species from eastern North America, Oecologia 84 (1990) 224–228.Google Scholar
  32. [32]
    Levin S.A., The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture, Ecology 73 (1992) 1943–1967.CrossRefGoogle Scholar
  33. [33]
    McClure J.W., Lee T.D., Leak W.B., Gap capture in northern hardwoods: patterns of establishment and height growth in four species, For. Ecol. Manage. 127 (2000) 181–189.CrossRefGoogle Scholar
  34. [34]
    Merrens E.J., Peart D.R., Effects of hurricane damage on individual growth and stand structure in a hardwood forest in New Hampshire, USA, J. Ecol. 80 (1992) 787–795.CrossRefGoogle Scholar
  35. [35]
    Mladenoff D.J., He H.S., Design and behaviour of LANDIS, an object-oriented model of forest landscape disturbance and succession, in: Advances in spatial modeling of forest landscape change: approaches and applications, Cambridge University Press, Cambridge, UK, 1999, pp. 125–162.Google Scholar
  36. [36]
    MRN, Norme de cartographie écoforestière, Forêt Québec, Direction des inventaires forestiers, Troisième programme de connaissance de la ressource forestière, Édition provisoire, ISBN : 2-551-19159-2, 2000, 84 p.Google Scholar
  37. [37]
    Niklas K.J., Plant biomechanics: An engineering approach to plant form and function, The University of Chicago Press, Chicago, USA, 1992, 607 p.Google Scholar
  38. [38]
    Nyland R.D., Ray D.G., Yanai R.D., Briggs R.D., Zhang L., Cymbala R.J., Twery M.J., Early cohort development following even-aged reproduction method cuttings in New York northern hardwoods, Can. J. For. Res. 30 (2000) 67–75.CrossRefGoogle Scholar
  39. [39]
    Perala D.A., Alm A.A., Reproductive ecology of birch: A review, For. Ecol. Manage. 32 (1990) 1–38.CrossRefGoogle Scholar
  40. [40]
    Perala D.A., Alm A.A., Regeneration silviculture of birch: A review, For. Ecol. Manage. 32 (1990) 39–77.CrossRefGoogle Scholar
  41. [41]
    Poulson T.L., Platt W.J., Replacement patterns of beech and sugar maple in Warren Woods, Michigan, Ecology 77 (1996) 1234–1253.Google Scholar
  42. [42]
    Robitaille A., Saucier J.-P, Paysages régionaux du Québec méridional, Les Publications du Québec, Québec, Canada, 1998, 213 p.Google Scholar
  43. [43]
    Runkle J.R., Gap regeneration in some old-growth forest of the eastern United States, Ecology 62 (1981) 1041–1051.CrossRefGoogle Scholar
  44. [44]
    Valladares F., Wright S.J., Lasso E., Kitajima K., Pearcy R.W., Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest, Ecology 81 (2000) 1925–1936.CrossRefGoogle Scholar
  45. [45]
    Vester H.F.M., Tree temperaments, in: Tyree M.T., Nardini A., Salleo S., Labrecque M., L’arbre 2000, The tree, Ed. Somabec, Ste-Hyacinthe Qc, Canada, 2001, pp. 25–30.Google Scholar
  46. [46]
    Walters M.B., Kruger EX., Reich P.B., Growth biomass distribution and CO2 exchange of northern hardwood seedlings in high and low light: relationships with successional status and shade tolerance, Oecologia 94 (1993) 7–16.CrossRefGoogle Scholar
  47. [47]
    Walters M.B., Reich P.B., Trade-offs in low light CO2 exchange: a component of variation in shade tolerance among cold temperate tree seedlings, Funct. Ecol. 14 (2000) 155–165.CrossRefGoogle Scholar
  48. [48]
    Whitney G.G., An ecological history of the great lakes forest of Michigan, J. Ecol. 75 (1987) 667–684.CrossRefGoogle Scholar
  49. [49]
    Whittaker R.J., Willis K.J., Field R., Scale and species richness: towards a general, hierarchical theory of species diversity, J. Biogeogr. 28 (2001) 453–470.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Philippe Nolet
    • 1
  • Sylvain Delagrange
    • 1
    • 2
  • Daniel Bouffard
    • 1
  • Frédérik Doyon
    • 1
    • 2
  • Eric Forget
    • 1
  1. 1.Institut Québécois d’Aménagement de la Forêt Feuillue (IQAFF)RiponCanada
  2. 2.Université du Québec en Outaouais (UQO)GatineauCanada

Personalised recommendations