Skip to main content
Log in

Estimating the sustainable harvesting and the stable diameter distribution of European beech with projection matrix models

Estimation de la récolte renouvelable et de la distribution stable du diamètre du hêtre par une projection de modèles matriciels

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

We present a projection matrix model to estimate the sustainable harvest rates and the stable diameter distributions of three qualities of European beech in the Spanish province of Navarre. Considering a period of 10 years and the diameter growth, trees were grouped into five classes: (0,10), (10,20), (20,30), (30,40) and over 40 cm. The transition probabilities were calculated assuming an approximation by splines to the diameter growth curves and uniform distributions for the diameters in each class. A condition for sustainable harvesting, leading to reach in each harvest the stable diameter distribution, was introduced. The results obtained suggest that, for each projection and depending on the quality, harvest rates in the range 18.8–37.5% for recruitments in the range 200–840 stems/ha, may be sustained without risk of a population reduction. Finally, the stable diameter distributions in relation to the recruitment were also obtained for each quality.

Résumé

Nous présentons une projection de modèle matriciel pour estimer les taux de récolte renouvelable et les distributions stables de diamètre de trois qualités de hêtre dans la province espagnole de Navarre. La croissance en diamètre sur une période de 10 ans a été prise en compte pour des arbres regroupés en cinq classes de diamètre : (0,10), (10,20), (20,30) et au-delà de 40 cm. Les probabilités ont été calculées en adoptant une approximation par aboutement des courbes de diamètre et les distributions uniformes pour les diamètres dans chaque classe de diamètre. Une condition pour une récolte renouvelable, importante pour atteindre une distribution stable de diamètre, a été introduite. Les résultats obtenus suggèrent, que pour chaque projection et en relation avec la qualité, un taux de récolte se situe dans une variation de 18,8 à 37,5 % pour un recrutement dans une variation de 200 à 840 arbres à l’hectare, peut être supporté sans risque pour une réduction de population. Finalement, des distributions stables de diamètre en relation avec le recrutement ont été obtenues pour chaque qualité.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonovics J., Levin D.A., The ecological and genetic consequences of density-dependent regulation in plants, Annual Rev. Ecol. Syst. 11 (1980) 411–452.

    Article  Google Scholar 

  2. Baar F., Gilisen J., Van Doren B., Cahier technique n∘ 15, Forêt Wallone, 2001.

    Google Scholar 

  3. Caswell H., Matrix population models: construction, analysis, and interpretation, 2nd ed., Sinauer Associates Inc., Sunderland, MA, USA, 2001.

    Google Scholar 

  4. Cancino J., von Gadow K., Stem number guide curves for unevenaged forests — development and limitations, in: von Gadow K., Nagel J., Saborowsky J. (Eds.), Continuous cover forestry, Kluwer Academic Press, Dordrecht, 2002, pp. 163–174.

    Google Scholar 

  5. Cohen J.E., Ergodic theorems in demography, Bull. Am. Math. Soc. 1 (1979) 275–295.

    Article  Google Scholar 

  6. Collet C., Lanter O., Pardos M., Effects of canopy opening on height and diameter growth in naturally regenerated beech seedlings, Ann. For. Sci. 58 (2001) 127–134.

    Article  Google Scholar 

  7. De Liocourt F., De l’aménagement des sapinières, Bull. Soc. for. Franche-Comté et du Territoire de Belfort 4 (1898) 396–409, 645–647.

    Google Scholar 

  8. Dohrenbusch A., Die Verjüngungsentwicklung der Buche (Fagus silvatica L.). Bericht einer langfristigen Beobachtung im Solling, Schriften aus der Forstlichen Fakultaet der Univ. Goettingen und der Niedersaechsischen Forstlichen Versuchsanstalt, Germany, 1990.

    Google Scholar 

  9. Frobenius G., Über Matrizen aus positiven Elementen, S.-B. Preuss. Akad. Wiss., Berlin, Germany, 1908.

    Google Scholar 

  10. Gadow K. v., Hui G., Modelling forest development, Faculty of Forest and Woodland Ecology, University of Göttingen, Germany, 1998.

    Google Scholar 

  11. Goñi J.M., Los bosques en Navarra, Departamento de Agricultura, Ganadería y Montes, Gobierno de Navarra, Spain, 1987.

    Google Scholar 

  12. Hein S., Dhôte J-F., Effects of species composition, stand density and site index on the basal area increment of oak trees (Quercus sp.) in mixed stands with beech (Fagus sylvatica L.) in northern France, Ann. For. Sci. 63 (2006) 457–467.

    Article  Google Scholar 

  13. ICONA, Segundo Inventario Forestal Nacional (1986–1995), Ministerio de Agricultura, Pesca y Alimentación (MAPA), Madrid, Spain, 1995.

    Google Scholar 

  14. Jaworsky A., Kolodziej Zb., Natural loss of trees, recruitment and increment in stands of primeval character in selected areas of the Bieszczady Mountains National Park (South-Eastern Poland), J. For. Sci. 48 (2002) 141–149.

    Google Scholar 

  15. Knoke T., Value of complete information on red heartwood formation in beech (Fagus sylvatica), Silva Fenn. 36 (2002) 841–851.

    Google Scholar 

  16. Koop H., Hilgen P., Forest dynamics and regeneration mosaic shifts in unexploited beech (Fagus sylvatica) stands at Fontainebleau (France), For. Ecol. Manage. 20 (1987) 135–150.

    Article  Google Scholar 

  17. Leslie P.H., On the use of matrices in certain population mathematics, Biometrika 33 (1945) 183–212.

    Article  PubMed  CAS  Google Scholar 

  18. Lefkovitch L.P., The study of population growth in organisms grouped by stages, Biometrics 21 (1965) 1–18.

    Article  Google Scholar 

  19. Madrigal A., Puertas F., Martínez Millán J., Tablas de production para “Fagus sylvatica L.” en Navarra, Gobierno de Navarra, Dpto. de Agricultura, Ganaderia y Alimentación, Navarra, 1996.

    Google Scholar 

  20. Madsen P., Larsen J.B., Natural regeneration of beech (Fagus sylvatica L.) with respect to canopy density, soil moisture and soil carbon content, For. Ecol. Manage. 97 (1997) 95–105.

    Article  Google Scholar 

  21. Maple version 10.0, Maplesoft, Ontario, Canada, 2005.

  22. Maréchal J.P., Bilan des placettes de référence en peuplements irréguliers : réseau, AFI-ENGREF, ENGREF, 1998.

  23. Peng C., Growth and yield models for uneven-aged stands: past, present and future, For. Ecol. Manage. 132 (2000) 259–279.

    Article  Google Scholar 

  24. Perron O., Zur Theorie der Matrizen, Math. Ann. 64 (1907) 248–263.

    Article  Google Scholar 

  25. Peterken G.F., Natural woodland. Ecology and conservation in Northern temperate regions, Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  26. Pielou E.C., An Introduction to mathematical ecology, Wiley Interscience, NY, USA, 1969.

    Google Scholar 

  27. Ramula S., Lehtilä K., Matrix dimensionality in demographic analyses of plants: when to use smaller matrices? Oikos 111 (2005) 563–573.

    Article  Google Scholar 

  28. Rozas V., Fernández J.A., Competition, mortality, and development of spatial patterns in two Cantabrian populations of Fagus Sylvatica L. (Fagaceae), Anales Jardín Botánico de Madrid 58 (2000) 117–131.

    Google Scholar 

  29. Sanchez-Gonzalez M., Tomé M., Montero G., Modelling height and diameter growth of dominant cork oak trees in Spain, Ann. For. Sci. 62 (2005) 633–643.

    Article  Google Scholar 

  30. Saniga M., Vplyv clony materskeho porastu na pociatocne fazy prirodzenej obnovy buka, Acta Facultatis Forestalls Zvolen 36 (1994) 117–125.

    Google Scholar 

  31. Schütz J.-P, Dynamique et conditions d’équilibre des peuplements jardinés sur les stations de la hêtraie à sapin, Schweiz. Z. Forstwes. 126 (1975) 637–671.

    Google Scholar 

  32. Schütz J.-P, Sylviculture 2, La gestion des forêts irrégulières et mélangées, Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 1997.

    Google Scholar 

  33. Schütz J.-P., Demographic sustainability of beech plenter forests, Ann. For. Sci. 63 (2006) 93–100.

    Article  Google Scholar 

  34. Sterba H., Equilibrium curves and growth models to deal with forests in transition to uneven-aged structure — Application in two sample stands, Silva Fenn. 38 (2004) 413–423.

    Google Scholar 

  35. Susmel L., Leggi di varianzione dei parametric della foresta disetanea normale, L’Italia Forestale e Montana XI (1956).

  36. Teissier du Cross E. (Ed.), Le Hêtre, INRA, Paris, 1981.

    Google Scholar 

  37. Timbal J., Répartition en Europe et en France du Hêtre, in: Le Hêtre, Teissier du Cross (Ed.), INRA, Département des Recherches Forestières, Paris, 1981, pp. 58–67.

    Google Scholar 

  38. Van Mantgem P.J., Stephenson N.T., The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada, California, J. Ecol. 93 (2005) 737–747.

    Article  Google Scholar 

  39. Vanclay J.K., Modeling forest growth and yield. Applications to mixed tropical forests, CAB International, Wallingford, UK, 1994.

    Google Scholar 

  40. Zuidema P.A., Demography of exploited tree species in the Bolivian Amazon, PROMAB Scientific Series 2, PROMAB — Riberalta, Bolivia, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, I., Ortuño, S.F., Martín, Á.J. et al. Estimating the sustainable harvesting and the stable diameter distribution of European beech with projection matrix models. Ann. For. Sci. 64, 593–599 (2007). https://doi.org/10.1051/forest:2007037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007037

Navigation