Skip to main content
Log in

Soil detritivore macro-invertebrate assemblages throughout a managed beech rotation

Les assemblages de macro-invertébrés détritivores du sol d’une rotation de futaie de hêtre

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

This work addresses the driving factors responsible for patterns in the detritivore macrofaunal communities of a managed beechwood chronosequence (28 to 197 years old, Normandy, France). We investigated the variation patterns of density, biomass and diversities of detritivore macrofauna throughout this rotation. Multivariate analyses were carried out to identify the main covariation patterns between species and some properties of their physical environment, and to describe the main ecological gradients constraining the macro-invertebrate community assembly. A total of 6 earthworm, 6 woodlouse and 7 millipede species were found in the whole data set. Density, biomass and diversity were profoundly influenced by forest ageing, mainly because of variation in humic epipedon spatial variability. Three groups of species were identified according to their environmental requirements. Some hypotheses regarding the external (related to management practices) or internal (related to inter-specific interactions) assembly rules behind species assemblages are proposed, an approach which has rarely been used in soil ecology. Finally, the impact of forestry practices on soil functioning through their impact on detritivore macro-invertebrate communities is discussed.

Résumé

Ce travail a pour but d’identifier les facteurs responsables des schémas de variation des communautés de la macrofaune detritivore d’une chronoséquence (28 à 197 ans) de futaie régulière de hêtre (Normandie, France). Les modèles de variation de la densité, la biomasse et la diversité ont été recherchés. Les modèles de covariation entre les espèces et certaines propriétés physiques du milieu ainsi que les gradients écologiques qui contraignent les assemblages de macro-détritivores ont été décrits à l’aide d’analyses multivariées. En tout, 6 espèces de vers de terre, 6 espèces d’isopodes et 7 espèces de diplopodes ont été identifiées. La maturation du peuplement de hêtre, principalement par les modifications de l’épisolum humifère, influence fortement les densité, biomasse et diversité. Trois groupes d’espèces sont identifiés sur la base de leurs exigences environnementales. Quelques hypothèses sont proposées quant aux règles externes (liées aux pratiques sylvicoles) et internes (liées aux relations interspéciques) qui contraignent la composition des assemblages d’espèces, cette approche ayant jusqu’à présent été peu utilisée en écologie du sol. Enfin, l’impact des pratiques sylvicoles sur le fonctionnement du sol, au travers de leur impact sur les communautés de macro-détritivores, est discuté.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AFES, A sound reference base for soils, INRA Editions, Paris, 1998.

    Google Scholar 

  2. Alard D., Poudevigne I., Diversity patterns in grasslands along a landscape gradient in north-western France, J. Veg. Sci. 11 (2000) 287–294.

    Article  Google Scholar 

  3. Arpin P., David J.F., Guittonneau G.G., Kilbertus G., Ponge J.F., Vannier G., Influence du peuplement forestier sur la faune et la microflore du sol et des humus. I. Description des stations et étude de la faune du sol, Rev. Ecol. Biol. Sol 23 (1986) 89–118.

    Google Scholar 

  4. Arpin P., Ponge J.-F., Faille A., Blandin P., Diversity and dynamics of eco-units in the biological reserves of the Fontainebleau forest (France): contribution of soil biology to a functional approach, Eur. J. Soil Biol. 34 (1998) 167–177.

    Article  Google Scholar 

  5. Aubert M., Alard D., Bureau F., Diversity of plant assemblages in managed temperate forests: a case study in Normandy (France), For. Ecol. Manage. 175 (2003) 321–337.

    Article  Google Scholar 

  6. Aubert M., Hedde M., Decaëns T., Bureau F., Margerie P., Alard D., Effects of three canopy on earthworms and other macro-invertebrates in beech forests of Upper Normandy (France), Pedobiologia 47 (2003) 904–912.

    Google Scholar 

  7. Aubert M., Margerie P., Ernoult A., Decaens T., Bureau F., Variability and heterogeneity of humus forms at stand level: comparison between pure beech and mixed beech-hornbeam forest, Ann. For. Sci. 63 (2006) 177–188.

    Article  Google Scholar 

  8. Augusto L., Ranger J., Binkley D., Rothe A., Impact of several common tree species on forest fertility, Ann. For. Sci. 59 (2002) 233–253.

    Article  Google Scholar 

  9. Baker G., Lee K.E., Earthworms, in: Carter M.R. (Ed.), Field samplings and methods of analysis, Lewis Publishers, Boca Raton, 1993, pp. 359–371.

    Google Scholar 

  10. Balent G., Construction of a reference frame for studying changes in species composition in grasslands: the example of an old field succession, Options Medit. 15 (1991) 73–81.

    Google Scholar 

  11. Ballard T.M., Impacts of forest management on northern forest soils, For. Ecol. Manage. 133 (2000) 37–42.

    Article  Google Scholar 

  12. Bengtsson J., Nilsson S.G., Franc A., Menozzi P., Biodiversity disturbances ecosystem function and management of European forests, For. Ecol. Manage. 132 (2000) 39–50.

    Article  Google Scholar 

  13. Beniamino F., Ponge J.F., Arpin P., Soil acidification under the crown of oak trees. I. Spatial distribution, For. Ecol. Manage. 40 (1991) 221–232.

    Article  Google Scholar 

  14. Bergès L., Chevallier R., Dumas Y., Franc A., Gilbert J.-M., Sessile oak (Quercus petrae Liebl.) site index variations in relation to climate, topography and soil in even-aged high-forest in northern France, Ann. For. Sci. 62 (2005) 391–402.

    Article  Google Scholar 

  15. Bernier N., Ponge J.F., Dynamique et stabilité des humus au cours du cycle sylvogénétique d’une pessière d’altitude, C.R. Acad. Sci. Paris, Série III 316 (1993) 647–651.

    Google Scholar 

  16. Bernier N., Ponge J.F., Humus form dynamics during the silvigenetic cycle in a mountain spruce forest, Soil Biol. Biochem. 26 (1994) 183–220.

    Article  Google Scholar 

  17. Blower J.G., Millipeds and centipeds as soil animals, in: Kevan K.M. (Ed.), Soil biology, Butterworths, 1955, pp. 138–151.

  18. Bouché M., Lombriciens de France, Écologie systématique, INRA Éditions, Paris, 1972.

    Google Scholar 

  19. Brêthes A., Catalogue des stations forestières du nord de la Haute-Normandie, ONF, Paris, 1984.

    Google Scholar 

  20. Branquart E., Kime R.D., Dufrêne M., Tavernier J., Wauthy G., Macroarthropod-habitat relationships in oak forests in south Belgium. I. Environment and communities, Pedobiologia 39 (1995) 243–263.

    Google Scholar 

  21. Caley M.J., Schluter D., The relationship between local and regional diversity, Ecology 78 (1997) 70–80.

    Article  Google Scholar 

  22. Chauvat M., Soil biota during forest rotation: Successional changes and implications for ecosystem performance, Ph.D. thesis, Justus-Liebig-Universităt Gießen.

  23. Chauvel A., Grimaldi M., Barros E., Blanchart E., Desjardins T., Sarrazin M., Lavelle P., Pasture damage by an Amazonian earthworm, Nature 398 (2000) 32–33.

    Article  Google Scholar 

  24. Chessel D., Lebreton J.D., Prodon R., Mesures symétriques d’amplitude d’habitat et de diversité intra-échantillon dans un tableau espèces-relevés: cas d’un gradient simple, C.R. Acad. Sci. Paris série III 295 (1982) 83–90.

    Google Scholar 

  25. Chollet F., La régénération naturelle du Hêtre, Bulletin Technique ONF, 32 (1997) 15–25.

    Google Scholar 

  26. David J.F., Relations entre les peuplements de diplopodes et les types d’humus en Forêt d’Orléans, Rev. Ecol. Biol. Sol 24 (1987) 515–525.

    Google Scholar 

  27. David J.F., Les peuplements de Diplopodes d’une forêt tempérée: variations spatiales et stabilité dans le temps, Rev. Ecol. Biol. Sol 26 (1989) 75–90.

    Google Scholar 

  28. David J.F., Ponge J.F., Delecour F., The saprophagous macrofauna of different types of humus in beech forests of the Ardennes (Belgium), Pedobiologia 37 (1993) 49–56.

    Google Scholar 

  29. Decaëns T., Bureau F., Margerie P., Earthworm communities in a wet agricultural landscape of the Seine Valley (Upper Normandy, France), Pedobiologia 47 (2003) 479–489.

    Google Scholar 

  30. Deleporte S., Changes in earthworm community of an acidophilous lowland beech forest during a stand rotation, Eur. J. Soil Biol. 37 (2001) 1–7.

    Article  Google Scholar 

  31. Demange J.M., Les milles-pattes Myriapodes, Boubée, Paris, 1981.

    Google Scholar 

  32. Diamond J.M., Assembly of species community, in: Cody M.L., Diamond J.M. (Eds.), Ecology and evolution of communities, Harvard Univ. Press, 1975, pp. 342–444.

  33. Edney E.B., Woodlice and the land habitat, Biol. Rev. 29 (1954) 185–219.

    Article  Google Scholar 

  34. FAO, ISSS and ISRIC, World reference bases for soil resources, Rome, 1998.

  35. Falinski J.B., Vegetation dynamics in temperate lowland primeval forest, Ecological studies in Bialowieza forest, Geobotany 8 (1986) 15–37.

    Google Scholar 

  36. Franklin J.F., Preserving biodiversity: Species, ecosystem or landscapes? Ecol. Appl. 3 (1993) 202–205.

    Article  Google Scholar 

  37. Hopkins S., A key to the woodlice of Britain and Ireland, Field studies, 7 (1991) 599–650.

    Google Scholar 

  38. Lavelle P., Spain A.V., Soil Ecology, Kluwer Academic Publishers, Dordrecht, 2001.

    Google Scholar 

  39. Lindenmayer D.B., Factors at multiple scales affecting distribution patterns and their implications for animal conservation — Leadbeater’s Possum as a case study, Biodiv. Conserv. 9 (2000) 15–35.

    Article  Google Scholar 

  40. Makeschin F., Earthworms (Lombricidae: Oligochæta): important promoters of soil development and soil fertility, in: Benckiser G. (Ed.), Fauna in soil ecosystems, Marcel Dekker, New York, 1997, pp. 173–223.

    Google Scholar 

  41. Mayer P., Brang P., Dobbertin M., Hallenbarter D., Renaud J.-P., Walthert L., Zimmermann S., Forest storm damage is more frequent on acidic soils, Ann. For. Sci. 62 (2005) 303–311.

    Article  CAS  Google Scholar 

  42. Molfetas S., Étude d’un écosystème forestier mixte. VIII. Les Isopodes, Rev. Ecol. Biol. Sol 19 (1982) 427–438.

    Google Scholar 

  43. Palmer M.W., The estimation of species richness by extrapolation, Ecology 71 (1990) 1195–1198.

    Article  Google Scholar 

  44. Ponge J.F., Delhaye L., The heterogeneity of humus profiles and earthworm communities in a virgin beech forest, Biol. Fertil. Soils 20 (1995) 20–24.

    Article  Google Scholar 

  45. Ponge J.F., André J., Zackrisson O., Bernier N., Nilsson M.C., Gallet C., The forest regeneration puzzle, Bioscience 48 (1998) 523–528.

    Article  Google Scholar 

  46. R Development Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2004. http://www.R-project.org.

    Google Scholar 

  47. Schaefer M., Schauermann J., The soil fauna of beech forests: comparison between a mull and a moder soil, Pedobiologia 34 (1990) 299–314.

    Google Scholar 

  48. Scheu S., Falca M., The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community, Oecologia 123 (1999) 285–296.

    Article  Google Scholar 

  49. Scheu S., Schlitt N., Tuinov A.V., Newington J.E., and Helfin T.J., Effects of the presence and community composition of earthworms on microbial community functioning, Oecologia 133 (2002) 254–260.

    Article  Google Scholar 

  50. Schnitzer S.A., Carson W.P., Have we forgotten the forest because of the trees? Trends Ecol. Evol. 15 (2000) 375–376.

    Article  PubMed  Google Scholar 

  51. Smith B., Wilson J.B., A consumer’s guide to evenness indices, Oikos 76 (1996) 70–82.

    Article  Google Scholar 

  52. Sohlenius B., Influence of clear-cutting and forest age on the nematode fauna in a Swedish pine forest soil, Appl. Soil Ecol. 19 (2002) 261–277.

    Article  Google Scholar 

  53. Sørensen T., A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analysis of the vegetation on Danish commons, Biol. Srk. 5 (1948) 1–34.

    Google Scholar 

  54. Thioulouse J., Chessel D., A method for reciprocal scaling of species tolerance and sample diversity, Ecology 73 (1992) 670–680.

    Article  Google Scholar 

  55. Thioulouse J., Dufour A.B., Chessel D., ade4: Analysis of Environmental Data: Exploratory and Euclidean methods in Environmental sciences, R package version 1.3-3, 2004.

  56. Vandel A., Isopodes terrestres (2 vol.), Paul Lechevallier, Paris, 1960.

    Google Scholar 

  57. Weiher E., Keddy P., Assembly rules as general constraints on community composition, in: Weiher E., Keddy P. (Eds.), Ecological assembly rules. Perspectives advances retreats, Cambridge University Press, Cambridge, 1999, pp. 251–271.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickaël Hedde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedde, M., Aubert, M., Bureau, F. et al. Soil detritivore macro-invertebrate assemblages throughout a managed beech rotation. Ann. For. Sci. 64, 219–228 (2007). https://doi.org/10.1051/forest:2006106

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2006106

Navigation