Skip to main content
Log in

Response of Douglas-fir leaf area index and litterfall dynamics to Swiss needle cast in north coastal Oregon, USA

Réponse de l’index foliaire (LAI) et de la dynamique de chute de litière du Douglas à la rouille suisse dans la zone côtière du Nord Oregon

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

Sources of variation in leaf area index (LAI; m2 of projected leaf area per m2 of ground area) and its seasonal dynamics are not well known in managed Douglas-fir stands, despite the importance of leaf area in forecasting forest growth, particularly in stands impacted by insects or disease. The influence of Swiss needle cast (SNC) on coastal Douglas-fir (Pseudotsuga menziesii var. menziesii [Mirb] Franco) LAI and litterfall dynamics was quantified by destructively sampling 122 stems from 36 different permanent plots throughout north coastal Oregon, USA, and by monitoring litterfall for 3 years in 15 of these plots. LAI, total annual litterfall, and the seasonal distribution of foliage and fine woody litterfall were all influenced by stand structural attributes, physiographic features, and SNC severity. Mean LAI in this study was 5.44 ± 2.16. The relatively low LAIs were attributed primarily to the effects of SNC on foliage retention, and secondarily to its direct measurement by hierarchical foliage sampling in contrast to indirect measurement by light interception or tree allometry. For a given stand structure and SNC severity, LAI was 36% greater in the fall after current year foliage was fully developed and older aged classes had not yet senesced. Annual litterfall expressed as a proportion of LAI at the start of the growing season varied from 0.13 to 0.53 and declined with increasing initial LAI. SNC also shifted more of the annual foliage litterfall to earlier in the spring. Fine woody litterfall experienced a different seasonal shift as the peak occurred later in the year on sites with high SNC, but this only occurred on northerly aspects. Defoliation from the endemic SNC pathogen can drastically reduce LAI and change both total and seasonal foliage litterfall patterns.

Résumé

Les sources de variation de l’index foliaire (LAI, m2 de surface projetée des feuilles par m2 de surface de sol) et sa dynamique saísonnière ne sont pas bien connues dans les peuplements aménagés de Douglas, malgré l’importance de la surface foliaire dans les prévisions de la croissance des forêts, particulièrement dans les peuplements touchés par des insectes ou les maladies. L’influence de la rouille suisse (SNC) sur l’index foliaire et la dynamique de chute de litière de Pseudotsuga menziesii var. menziesii [Mirb.] Franco ont été quantifiées grâce à un échantillonnage destructif de 122 tiges dans 36 placeaux permanents dans la zone côtière du Nord Oregon (USA) et le suivi pendant 3 ans des chutes de litière dans 15 de ces placeaux. L’index foliaire, la chute annuelle totale de litière, et la distribution du feuillage et la litière ligneuse fine ont tous été influencés par les attributs structuraux, les caractéristiques physiographiques et la gravité de SNC. Dans cette étude la moyenne de l’index foliaire était de 5,44 ± 2,16. Les index foliaires relativement faibles ont été essentiellement attribués aux effets de SNC sur le maintien du feuillage, et secondairement sur ses mesures directes par un échantillonnage hiérarchisé par opposition aux mesures indirectes par interception de la lumière ou par des méthodes d’allométrie au niveau des arbres. Pour une structure de peuplement et une gravité de SNC données, l’index foliaire a été 36 % plus élevé à l’automne après le plein développement du feuillage de l’année en cours et avant la sénescence des classes plus âgées. La chute annuelle de litière exprimée en proportion de l’index foliaire au début de la saison de croissance a varié de 0,13 à 0,53 et a baissé avec l’augmentation de l’index foliaire initial. La SNC a aussi enlevé plus que la chute annuelle de feuillage de la litière plus tôt au printemps. La litière ligneuse fine a été rencontrée à différents moments dans la saison alors que le pic s’est produit plus tard dans l’année dans les sites présentant une SNC élevée, mais ceci s’est seulement produit dans les expositions au nord. La défoliation par le pathogène endémique SNC peut réduire considérablement l’index foliaire et change à la fois les modèles de chute totale et de chute saisonnière de litière.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrektson A., Needle litterfall in stands of Pinus sylvestris in Sweden in relation to site quality, stand age, and latitude, Scand. J. For. Res. 3 (1988) 333–342.

    Article  Google Scholar 

  2. Arkley R.J., Glauser R., Effects of oxidant air pollutants on pine litterfall and the forest floor, in: Miller P.R. (Ed.), Symposium on effects of air pollutants on Mediterranean and temperate forest ecosystems, Pacific Southwest Forest and Range Experimental Station, USDA Forest Service, Berkeley, CA, 1980, 225 p.

    Google Scholar 

  3. Balster N.J., Marshall J.D., Decreased needle longevity of fertilized Douglas-fir and grand fir in the northern Rockies, Tree Physiol. 20 (2000) 1191–1197.

    PubMed  Google Scholar 

  4. Bartelink H.H., Effects of stand composition and thinning in mixed-species forests: a modeling approach applied to Douglas-fir and beech, Tree Physiol. 20 (2000) 399–406.

    PubMed  Google Scholar 

  5. Bille-Hansen J., Hansen K., Relation between defoliation and litterfall in some Danish Picea abies and Fagus sylvatica stands, Scand. J. For. Res. 16 (2001) 127–137.

    Article  Google Scholar 

  6. Bosveld F.C., Bouten W., Evaluation of transpiration models with observations over a Douglas-fir forest, Agric. For. Meteorol. 108 (2001) 247–264.

    Article  Google Scholar 

  7. Bouriaud O., Soudani K., Bréda N., Leaf area index from litter collection: impact of specific leaf area variability within a beech stand, Can. J. Remote Sens. 29 (2003) 371–380.

    Article  Google Scholar 

  8. Bray J.R., Gorham E., Litter production in forests of the world, Adv. Ecol. Res. 2 (1964) 101–158.

    Article  Google Scholar 

  9. Bréda N., Ground-based measurements of leaf area index: a review of methods, instruments and current controversies, J. Exp. Bot. 54 (2003) 2403–2417.

    Article  PubMed  Google Scholar 

  10. Bruce D., Consistent height-growth and growth-rate estimates for remeasured plots, For. Sci. 4 (1981) 711–725.

    Google Scholar 

  11. Cobb R.C., Orwig D.A., Impacts of hemlock woolly adelgid infestation on decomposition: An overview., in: Reardon R.C., Onken B.P., Lashomb L. (Eds.), Symposium on the hemlock woolly adelgid in eastern North America., New Jersey Agricultural Experiment Station, New Brunswick, NJ, 2002, pp. 317–323.

    Google Scholar 

  12. Curtis R.O., A simple index of stand density for Douglas-fir, For. Sci. 28 (1982) 92–94.

    Google Scholar 

  13. Dimock E.J., Litterfall in a young stand of Douglas-fir, Northwest Sci. 32 (1958) 19–29.

    Google Scholar 

  14. Esprey L.J., Sands P.J., Smith C.W., Understanding 3-PG using a sensitivity analysis, For. Ecol. Manage. 193 (2004) 235–250.

    Article  Google Scholar 

  15. Fogel R., Hunt G., Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnover, Can. J. For. Res. 9 (1979) 245–256.

    Article  Google Scholar 

  16. Gessel S.P., Turner J., Litter production in western Washington Douglas-fir stands, Forestry 49 (1976) 63–72.

    Article  Google Scholar 

  17. Gholz H.L., Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest, Ecology 63 (1982) 469–481.

    Article  Google Scholar 

  18. Gower S.T., Kucharik C.J., Norman J.M., Direct and indirect estimation of lear area index, f APAR, and net primary production of terrestrial ecosystems, Rem. Sens. Environ. 70 (1999) 29–51.

    Article  Google Scholar 

  19. Grier C.C., Foliage loss due to snow, wind, and winter-drying damage: its effects on leaf biomass of some western conifer forests, Can. J. For. Res. 18 (1988) 1097–1102.

    Article  Google Scholar 

  20. Grier C.C., Running S.W., Leaf area of mature northwestern coniferous forests: relation to site water balance, Ecology 58 (1977) 893–899.

    Article  Google Scholar 

  21. Hansen E.M., Stone J.K., Capitano B.R., Rosso P., Sutton W., Winton L., Kanaskie A., McWilliams M., Incidence and impact of Swiss needle cast in forest plantations of Douglas-fir in coastal Oregon, Plant Dis. 84 (2000) 773–778.

    Article  Google Scholar 

  22. Heilman P.E., Gessel S.P., Nitrogen requirements and the biological cycling of nitrogen in Douglas-fir stands in relationship to the effects of nitrogen fertilization, Plant Soil 18 (1963) 386–402.

    Article  Google Scholar 

  23. Jonckheere I., Fleck S., Nackaerts K., Muys B., Cooppin P., Weiss M., Baret F., Review of methods for in situ leaf area index determination Part I. Theories, sensors, and hemispherical photography, Agric. For. Meteorol. 121 (2004) 19–35.

    Article  Google Scholar 

  24. Jukola-Sulonen EX., Hokkanen T., Jalkanen R., Kleemola J., Kurka A.M., Merilä P., Niemelä P., Poikolainen J., Saronen E.M., The litter and status of Scots pine forests, in: Tikkanen E., Niemelä I. (Eds.), Kola Peninsula pollutants and forest ecosystems in Lapland: Final report of the Lapland Forest Damage Project, 1995, pp. 55–59.

  25. Kanaskie A., McWilliams M., Sprengel K., Overhulser D., Swiss needle cast aerial surveys, 1996 to 2005, in: Mainwaring D., Shaw D. (Eds.), Swiss Needle Cast Cooperative 2005 annual report, College of Forestry, Oregon State University, Corvallis, OR, 2005, pp. 9–11.

    Google Scholar 

  26. Kizlinski M.L., Orwig D.A., Cobb R.C., Foster D.R., Direct and indirect ecosystem consequences of an invasive pest on forests dominated by eastern hemlock, Biogeography 29 (2002) 1489–1503.

    Article  Google Scholar 

  27. Kouki J., Hokkanen T., Long-term needle litterfall of a Scots pine (Pinus sylvestris) stand: relation to temperature factors, Oecologia 89 (1992) 176–181.

    Google Scholar 

  28. Kucharik C.J., Norman J.M., Gower S.T., Measurements of branch area and adjusting leaf area index indirect measurements, Agric. For. Meteorol. 91 (1998) 69–88.

    Article  Google Scholar 

  29. Kull O., Tulva I., Modelling canopy growth and steady-state leaf area index in an aspen stand, Ann. For. Sci. 57 (2000) 611–621.

    Article  Google Scholar 

  30. Lambers H., Chapin F.S., Pons T.L., Plant physiological ecology, Springer-Verlag, New York, NY, 1998.

    Google Scholar 

  31. Lehtonen A., Sievänen R., Mäkelä A., Mäkipää R., Korhonen K.T., Hokkanen T., Potential litterfall of Scots pine branches in southern Finland, Ecol. Mod. 180 (2004) 305–315.

    Article  CAS  Google Scholar 

  32. Licata J.A., Structure and physiological changes with stand age: use of process-based model to compare carbon and water fluxes in young and old-growth Douglas-fir/western hemlock forest stands, M.S. Thesis, Department of Forest Science, Oregon State University, Corvallis, OR, 2003, p. 118.

    Google Scholar 

  33. Luo Y., Medlyn B., Hui D., Ellsworth D., Reynolds J., Katul G., Gross primary productivity in Duke forest: modeling synthesis of CO2experiment and eddy-flux data, Ecol. Appl. 11 (2001) 239–252.

    Google Scholar 

  34. Maguire D.A., Branch mortality and potential litterfall from Douglas-fir trees in stands of varying density, For. Ecol. Manage. 70 (1994) 41–53.

    Article  Google Scholar 

  35. Maguire D.A., Batista J.L.F., Sapwood taper models and implied sapwood volume and foliage profiles for coastal Douglas-fir, Can. J. For. Res. 26 (1996) 849–863.

    Article  Google Scholar 

  36. Maguire D.A., Bennett W.S., Patterns in the vertical distribution of foliage in young coastal Douglas-fir, Can. J. For. Res. 26 (1996) 1991–2005.

    Article  Google Scholar 

  37. Maguire D.A., Kanaskie A., The ratio of live crown length to sap-wood area as a measure of crown sparseness, For. Sci. 48 (2002) 93–100.

    Google Scholar 

  38. Maguire D.A., Kanaskie A., Voelker W., Johnson R., Johnson G., Growth of young Douglas-fir plantations across a gradient in Swiss needle cast severity, West. J. Appl. For. 17 (2002) 86–95.

    Google Scholar 

  39. Manter D.K., Bond B.J., Kavanagh K.L., Stone J.K., Filip G.M., Modelling the impacts of the foliar pathogen, Phaeocryptopus gaeumannii, on Douglas-fir physiology: net canopy carbon assimilation, needle abscission, and growth, Ecol. Mod. 164 (2003) 211–226.

    Article  Google Scholar 

  40. Manter D.K., Winton L.M., Filip G.M., Stone J.K., Assessment of Swiss needle cast disease: temporal and spatial investigations of fungal colonization and symptom severity, Phytopathology 151 (2003) 344–351.

    Article  Google Scholar 

  41. Marshall J.D., Waring R.H., Comparison of methods of estimating leaf-area index in old-growth Douglas-fir, Ecology 67 (1986) 975–979.

    Article  Google Scholar 

  42. Mitchell S., Forest health: preliminary interpretations for wind damage, Stand Density Management Diagrams, Forest Practices Branch, BC Ministry of Forestry, Victoria, BC, 2000, 40 p. http//www.for.gov.bc.ca/hfp/publications/00166/WD_29Mar00.pdf.

    Google Scholar 

  43. Mohren G.M.J., Simulation of forest growth, applied to Douglas fir stands in the Netherlands, Ph.D. dissertation. Wageningen Agricultural University, Wageningen, The Netherlands, 1987, 175 p.

    Google Scholar 

  44. Muukkonen P., Lehtonen A., Needle and branch biomass turnover rates of Norway spruce (Picea abies), Can. J. For. Res. 34 (2004) 2517–2527.

    Article  Google Scholar 

  45. Piene H., Fleming R.A., Spruce budworm defoliation and growth loss in young balsam fir: spacing effects on needle fall in protected trees, For. Sci. 42 (1996) 282–289.

    Google Scholar 

  46. Poikolainen J., Kubin E., On the correlation between needle litterfall and defoliation in a Scots pine stand and in a norway spruce stand, in: Aamlid D. (Ed.), Crown condition assessment in the Nordic countries: Proceedings from an intercalibration course for Northern Europe on crown condition assessment, Sundvolden, 1997, pp. 30–33.

  47. Ranger J., Gerard F., Lindemann M., Gelhaye D., Gelhaye L., Dynamics of litterfall in a chronosequence of Douglas-fir (Pseudotsuga menziesii Franco) stands in the Beaujolais mounts (France), Ann. For. Sci. 60 (2003) 475–488.

    Article  Google Scholar 

  48. Roberts J., Hopkins R., Morecroft M., Towards a predictive description of forest canopies from litter properties, Funct. Ecol. 13 (1999) 265–272.

    Article  Google Scholar 

  49. Robinson A.P., Wykoff W.R., Inputting missing height measurements using a mixed-effects modeling strategy, Can. J. For. Res. 34 (2004) 2492–2500.

    Article  Google Scholar 

  50. Rosso PH., Hansen E.M., Predicting Swiss needle cast disease distribution and severity in young Douglas-fir plantations in coastal Oregon, Phytopathology 93 (2003) 790–798.

    Article  PubMed  Google Scholar 

  51. Russell G., Marshall B., Jarvis P.G. (Eds.), Plant canopies: their growth, form and function, Cambridge University, Cambridge, UK, 1989.

    Google Scholar 

  52. Sampson D.A., Albaugh T.J., Johnsen K.H., Allen H.L., Zarnoch S.J., Monthly leaf area index estimates from point-in-time measurements and needle phenology for Pinus taeda, Can. J. For. Res. 33 (2003) 2477–2490.

    Article  Google Scholar 

  53. Stage A.R., An expression for the effect of aspect, slope, and habitat type on tree growth, For. Sci. 22 (1976) 457–460.

    Google Scholar 

  54. Thomas S.C., Winner W.E., Leaf area index of an old-growth Douglas-fir forest estimated from direct structural measurements in the canopy, Can. J. For. Res. 30 (2000) 1922–1930.

    Article  Google Scholar 

  55. Thomson A.J., Moncrieff S.M., Prediction of bud burst in Douglas-fir by degree-day accumulation, Can. J. For. Res. 12 (1982) 448–452.

    Article  Google Scholar 

  56. Trofymow J.A., Barely HJ., McCullough K.M., Annual rates and elemental concentrations of litter fall in thinned and fertilized Douglas-fir, Can. J. For. Res. 21 (1991) 1601–1615.

    Article  CAS  Google Scholar 

  57. Turnbull C.R.A., Madden J.L., Relationship of litterfall to basal area and climatic variables in cool temperate forests of southern Tasmania, Austral. J. Ecol. 8 (1983) 425–431.

    Article  Google Scholar 

  58. Turner D.P., Acker S.A., Means J.E., Garman S.L., Assessing alternative allometric algorithms for estimating leaf area of Douglas-fir trees and stands, For. Ecol. Manage. 126 (2000) 61–76.

    Article  Google Scholar 

  59. Turner J., Long J.N., Accumulation of organic matter in a series of Douglas-fir stands, Can. J. For. Res. 5 (1975) 681–690.

    Article  Google Scholar 

  60. Velazquez-Martinez A., Perry D.A., Bell T.E., Response of above-ground biomass increment, growth efficiency, and foliar nutrients to thinning, fertilization, and pruning in young Douglas-fir plantations in the central Oregon Cascades, Can. J. For. Res. 22 (1992) 1278–1289.

    Article  Google Scholar 

  61. Vogt K.A., Grier C.C., Vogt DJ., Production, turnover, and nutrient dynamics of above and belowground detritus of world forests, Adv. Ecol. Res. 15 (1986) 303–377.

    Article  Google Scholar 

  62. Vose J.M., Dougherty P.M., Long J.N., Smith F.W., Gholz H.L., Curran P.J., Factors influencing the amount and distribution of leaf area of pine stands, Ecol. Bull. 43 (1994) 102–114.

    Google Scholar 

  63. Vose J.M., Swank W.T., Assessing the seasonal leaf area dynamics and vertical leaf area distribution in eastern white pine (Pinus strobus L.) with a portable light meter, Tree Physiol. 7 (1990) 125–134.

    PubMed  Google Scholar 

  64. Weiskittel A., Maguire D., Influence of Swiss needle cast on Douglas-fir stem properties, in: Mainwaring D. (Ed.), Swiss needle cast cooperative 2004 annual report, Oregon State University, College of Forestry, Corvallis, OR, 2004, pp. 91–97.

    Google Scholar 

  65. Weiskittel A.R., Alterations in Douglas-fir crown structure, morphology, and dynamics imposed by the Swiss needle cast disease in the Oregon Coast Range, M.S. thesis, Oregon State University, Corvallis, OR, 2003, p. 389. http://www.holoros.com/thesis.pdf.

    Google Scholar 

  66. Weiskittel A.R., Maguire D.A., Garber S.M., Kanaskie A., Influence of Swiss needle cast on foliage age class structure and vertical distribution in Douglas-fir plantations of north coastal Oregon, Can. J. For. Res. 36 (2006) 1497–1508.

    Article  Google Scholar 

  67. Weiss M., Baret F., Smith G.J., Jonckheere I., Coppin P., Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling, Agric. For. Meteorol. 121 (2004) 37–53.

    Article  Google Scholar 

  68. White M.A., Thorton P.E., Running S.W., Nemani R., Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls, Earth Interactions 4 (2000) 1–46.

    Article  Google Scholar 

  69. Whitehead D., Kelliher F.M., Frampton CM., Godfrey M.J.S., Seasonal development of leaf area in a young, widely spaced Pinus radiata D. Don stand, Tree Physiol. 14 (1994) 1019–1038.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron R. Weiskittel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiskittel, A.R., Maguire, D.A. Response of Douglas-fir leaf area index and litterfall dynamics to Swiss needle cast in north coastal Oregon, USA. Ann. For. Sci. 64, 121–132 (2007). https://doi.org/10.1051/forest:2006096

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2006096

Navigation