Skip to main content
Log in

Decreasing trend and fluctuations in the mean ring density of Norway spruce through the twentieth century

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

  • • Studies on wood density variations are necessary for estimating the forest carbon pool. Further, they can help predict the technological properties of wooden end-products. While there have been frequent reports on the relationships between wood density, cambial age, and ring width, there is little information about the historical trend in wood density for the last century, particularly in the context of global climate change.

  • • In this study, different sources of variations in mean ring density (site, tree, ring age, ring width, and calendar date) were studied using an original sampling design. A total of 105 Norway spruce (Picea abies Karst.) trees were sampled in north-eastern France, from thirteen sites with trees of different ages growing at the same site and in similar conditions. X-ray densitometry measurements were performed on samples taken at breast height. The chronology of the mean ring density over the 20th century was estimated by using a statistical modelling approach based on linear mixed-effects models after accounting for the effect on the mean ring density introduced by different ring widths, cambial ages, sites, and trees.

  • • The mean ring density of Norway spruce was seen to decrease by about 18 kg m−3 relative to the year 1900. The chronology showed no evolution between 1900 and 1950, a steep decline from 1950 to 1980 (reaching a maximum decrease of 30 kg m−3), followed by an increase from 1980 to 2000.

  • • The observed decrease was consistent with the results of previous works and supports the hypothesis that this could indicate a global trend and that this trend is independent of the wood structure. Moreover, high inter-annual density variations were found. In future studies, the influence of climate on the wood density and within-ring properties must be clarified to identify the anatomic causes for wood density variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badeau V., Becker M., Bert D., Dupouey J.-L., Lebourgeois F., and Picard J.-F., 1996. Long-term growth trends of trees: ten years of dendrochronological studies in France. In: Spiecker H., Mielikaïnen K., Köhl M., Skovsgaard J. (Eds.), Growth Trends in European Forests. Studies from 12 Countries, European Forest Institute Research Report 5, Springer, Berlin, Heidelberg, New York, 372: 167–181.

    Google Scholar 

  • Bontemps J.D., Herve J.C., and Dhote J.F., 2009. Long-term changes in forest productivity: a consistent assessment in even-aged stands. For. Sci. 55: 549–564.

    Google Scholar 

  • Bergès L., Dupouey J.-L., and Franc A., 2000. Long-term changes in wood density and radial growth of Quercus petraea Liebl. in northern France since the middle of the nineteenth century. Trees 14: 398–408.

    Article  Google Scholar 

  • Blake L., Goulding K.W.T., Mott C.J.B., and Johnston A.E., 1999. Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK. Eur. J. Soil Sci. 50: 401–412.

    Article  CAS  Google Scholar 

  • Bouriaud O., Breda N., Le Moguedec G., and Nepveu G., 2004. Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees 18: 264–276.

    Google Scholar 

  • Briffa K.R., Schweingruber F.H., Jones P.D., Osborn T.J., Shiyatov S.G., and Vaganov E.A., 1998. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391: 678–682.

    Article  CAS  Google Scholar 

  • Briffa K.R., Osborn T.J., Schweingruber F.H., Jones P.D., Shiyatov S., and Vaganov E.A., 2002. Tree-ring width and density data around the Northern Hemisphere: Part 1, Local and regional climate signals. Holocene 12: 737–757.

    Article  Google Scholar 

  • Cao T.J., Valsta L., Harkonen S., Saranpaa P., and Makela A., 2008. Effects of thinning and fertilization on wood properties and economic returns for Norway spruce. For. Ecol. Manag. 256: 1280–1289.

    Article  Google Scholar 

  • Conkey L.E., 1988. Decline in old-growth red spruce in Western Maine — an analysis of wood density and climate. Can. J. For. Res. 18: 1063–1068.

    Article  Google Scholar 

  • Decoux V., Varcin E., and Leban J.M., 2004. Relationships between the intra-ring wood density assessed by X-ray densitometry and optical anatomical measurements in conifers. Consequences for the cell wall apparent density determination. Ann. For. Sci. 61: 251–262.

    Article  Google Scholar 

  • De Vries W., Reinds G.J., Gundersen P., and Sterba H., 2006. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Glob. Change Biol. 12: 1151–1173.

    Article  Google Scholar 

  • Duplat P. and TranHa M., 1997. Modelling the dominant height growth of sessile oak (Quercus petraea Liebl.) in France. Inter-regional variability and effect of the recent period (1959–1993). Ann. Sci. For. 54: 611–634.

    Article  Google Scholar 

  • Freyburger C., Longuetaud F., Mothe F., and Leban J.M., 2009. Measuring wood density using X-ray computed tomography. Ann. For. Sci. 66, 804.

    Article  Google Scholar 

  • Fritts H.C., 1976. Tree Rings and Climate. Academic Press, London.

    Google Scholar 

  • Gagen M., McCarroll D., and Edouard J.L., 2006. Combining ring width, density and stable carbon isotope proxies to enhance the climate signal in tree-rings: An example from the southern French Alps. Clim. Change 78: 363–379.

    Article  CAS  Google Scholar 

  • Gerendiain A.Z., Peltola H., Pulkkinen P., Jaatinen R., Pappinen A., and Kellomaki S., 2007. Differences in growth and wood property traits in cloned Norway spruce (Picea abies). Can. J. For. Res. 37: 2600–2611.

    Article  Google Scholar 

  • Guilley E., Hervé J.-C., Huber F., and Nepveu G., 1999. Modelling variability of within rings density components in Quercus petraea Liebl. with mixed-effects models and simulating the influence of contrasting silvicultures on wood density. Ann. For. Sci. 56: 449–458.

    Article  Google Scholar 

  • Gutierrez Oliva A., Baonza Merino V., Fernandez-Golfin Seco J.I., Conde Garcia M., and Hermoso Prieto E., 2006. Effect of growth conditions on wood density of Spanish Pinus nigra. Wood Sci. Technol. 40: 190–204.

    Article  Google Scholar 

  • Hannrup B., Cahalan C., Chantre G., Grabner M., Karlsson B., Le Bayon I., Lloyd Jones G., Müller U., Pereira H., Rodrigues J.C., Rosner S., Rozenberg P., Whilelmsson L., and Wimmer R., 2004. Genetic parameters of growth and wood quality traits in Picea abies. Scan. J. For. Res. 19: 14–29.

    Article  Google Scholar 

  • Hattenschwiler S., Schweingruber F.H., and Korner C., 1996. Tree ring responses to elevated CO2 and increased N deposition in Picea abies. Plant Cell Environ. 19: 1369–1378.

    Article  CAS  Google Scholar 

  • Hastings M.G., Jarvis J.C., and Steig E.J., 2009. Anthropogenic impacts on nitrogen isotopes of ice-core nitrate. Science 324: 1288–1288.

    Article  PubMed  CAS  Google Scholar 

  • Hervé J.C., 1999. Mixed-effects modelling of between-tree and withintree variations: application to wood basic density in the stem, In: Leban J.-M., Hervé J.-C. (Eds.), FAIR CT96-1915. Product properties prediction — improved utilization in the forestry — wood chain applied on spruce sawnwood, Sub-task 2.1, Final report, 67 p., pp. 25–42.

  • Ikonen V.P., Peltola H., Wilhelmsson L., Kilpelainen A., Vaisanen H., Nuutinen T., and Kellomaki S., 2008. Modelling the distribution of wood properties along the stems of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as affected by silvicultural management. For. Ecol. Manage. 256: 1356–1371.

    Article  Google Scholar 

  • IPCC, 2007. Climate Change 2007. Synthesis report, 52.

  • Jaakkola T., Makinen H., and Saranpaa P., 2005. Wood density in Norway spruce: changes with thinning intensity and tree age. Can J. For. Res. 35: 1767–1778.

    Article  Google Scholar 

  • Jyske T., Makinen H., and Saranpaa P., 2008. Wood density within Norway spruce stems. Silva Fennica 42: 439–455.

    Google Scholar 

  • Jyske T., Holtta T., Makinen H., Nojd P., Lumme, I., and Spiecker H., 2010. The effect of artificially induced drought on radial increment and wood properties of Norway spruce. Tree Physiol. 30: 103–115.

    Article  PubMed  Google Scholar 

  • Kahle H.-P., Karjalainen, Schuck T.A., and Ågren G.I., 2008. Causes and consequences of forest growth trends in Europe. Res. Rep. No. 21. European Forest Institute, Joensuu, Finland, 261.

    Google Scholar 

  • Karenlampi P.P. and Riekkinen M., 2003. Prediction of the heartwood content of pine logs. Wood Fiber Sci. 35: 83–89.

    CAS  Google Scholar 

  • Kilpelainen A., Peltola H., Ryyppo A., and Kellomaki S., 2005. Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties. Tree Physiol. 25: 75–83.

    PubMed  Google Scholar 

  • Kostiainen K., Kaakinen S., Saranpaa P., Sigurdsson B.D., Linder S., and Vapaavuori E., 2004. Effect of elevated CO2 on stem wood properties of mature Norway spruce grown at different soil nutrient availability. Glob. Change Biol. 10: 1526–1538.

    Article  Google Scholar 

  • Kostiainen K., Kaakinen S., Saranpaa P., Sigurdsson B.D., Lundqvist S.O., Linder S., and Vapaavuori E., 2009. Stem wood properties of mature Norway spruce after 3 years of continuous exposure to elevated CO2 and temperature. Glob. Change Biol. 15: 368–379.

    Article  Google Scholar 

  • Le Moguedec G., Dhote J.F., and Nepveu G., 2002. Choosing simplified mixed models for simulations when data have a complex hierarchical organization. An example with some basic properties in Sessile oak wood (Quercus petraea Liebl.). Ann. For. Sci. 59: 847–855.

    Article  Google Scholar 

  • Lindström M.J., and Bates D.M. (1990). Nonlinear mixed effect models for repeated measures data. Biometrics 46: 673–687.

    Article  PubMed  Google Scholar 

  • Longuetaud F., Mothe F., Leban J.M., and Makela A., 2006. Picea abies sapwood width: variations within and between trees. Scan. J. For. Res. 21: 41–53.

    Article  Google Scholar 

  • Lundgren C., 2004a. Cell wall thickness and tangential and radial cell diameter of fertilized and irrigated Norway spruce. Silva Fennica 38: 95–106.

    Google Scholar 

  • Lundgren C., 2004b. Microfibril angle and density patterns of fertilized and irrigated Norway spruce. Silva Fennica 38: 107–117.

    Google Scholar 

  • Mäkinen H., Saranpää P., and Linder S., 2002. Wood density variation of Norway spruce in relation to nutrient optimization and fibre dimensions. Can. J. For. Res. 32: 185–194.

    Article  Google Scholar 

  • Mäkinen H., Jaakkola T., Piispanen R., and Saranpää P., 2007. Predicting wood and tracheid properties of Norway spruce. For. Ecol. Manage. 241: 175–188.

    Article  Google Scholar 

  • Moisselin J.-M., Schneider M., Canellas C., and Mestre O., 2002. Changements climatiques en France au XXe siècle, Étude de longues séries de données homogénéisées françaises de précipitations et températures. La Météorologie 38: 45–56.

    Google Scholar 

  • Molteberg D. and Hoibo A., 2007. Modelling of wood density and fibre dimensions in mature Norway spruce. Can. J. For. Res. 37: 1373–1389.

    Article  Google Scholar 

  • Mothe F., Duchanois G., Zannier B., and Leban J.-M., 1998. Analyse microdensitométrique appliqué au bois: une méthode de traitement des données aboutissant à la description synthétique et homogène des profils de cernes (programme CERD). Ann. Sci. For. 55: 301–315.

    Article  Google Scholar 

  • Olesen P.O., 1976. The interrelation between basic density and ring width of Norway spruce. Forstlige Forsoegsvaesen i Danmark 34.

  • Pape R., 1999. Effects of thinning regime on the wood properties and stem quality of Picea abies. Scan. J. For. Res. 14: 38–50.

    Google Scholar 

  • Pinheiro J., Bates D., DebRoy S., Sarkar D., and the R Core team (2009). nlme: Linear and Nonlinear Mixed Effects Models, R package version 3. 1–93.

    Google Scholar 

  • Polge H. and Nicholls J.W.P., 1972. Quantitative radiography and the densitometric analysis. Wood Sci. 5: 51–59.

    Google Scholar 

  • Raiskila S., Saranpaa P., Fagerstedt K., Laakso T., Loija M., Mahlberg R., Paajanen L., and Ritschkoff A.C., 2006. Growth rate and wood properties of Norway spruce cutting clones on different sites. Silva Fennica 40: 247–256.

    Google Scholar 

  • Rozenberg P., Franc A., Bastien C., and Cahalan C., 2001. Improving models of wood density by including genetic effects: a case study in Douglas-fir. Ann. For. Sci. 58: 385–394.

    Article  Google Scholar 

  • Seynave I., Gegout J.C., Herve J.C., Dhote J.F., Drapier J., Bruno E., and Dume G., 2005. Picea abies site index prediction by environmental factors and understorey vegetation: a two-scale approach based on survey databases. Can. J. For. Res. 35: 1669–1678.

    Article  CAS  Google Scholar 

  • St-Germain J.L. and Krause C., 2008. Latitudinal variation in tree-ring and wood cell characteristics of Picea mariana across the continuous boreal forest in Quebec. Can. J. For. Res. 38: 1397–1405.

    Article  Google Scholar 

  • Spiecker H., Mielikaïnen K., Köhl M., and Skovsgaard J., 1996. Growth Trends in European Forests. Studies from 12 Countries, European Forest Institute Research Report 5. Springer, Berlin, Heidelberg, New York, 372.

    Google Scholar 

  • Taylor A.M., Gartner B.L., and Morrell J.J., 2002. Heartwood formation and natural durability — a review. Wood Fiber Sci. 34: 587–611.

    CAS  Google Scholar 

  • Vitousek P.M., Aber J.D., Goodale C.L., and Aplet G.H., 2000. Global change and wilderness science. USDA Forest Service Proceedings, RMRS-P-15 (Rocky Mountains Research Station Proceedings 15 Wilderness), Science in a time of change. Conferences. Vol. 1: Changing perspectives and future directions, 5–9.

  • Wang L., Payette S., and Begin Y., 2002. Relationships between anatomical and densitometric characteristics of black spruce and summer temperature at tree line in northern Quebec. Can. J. For. Res. 32: 477–486.

    Article  Google Scholar 

  • Wilhelmsson L., Arlinger J., Spangberg K., Lundqvist S.O., Grahn T., Hedenberg O., and Olsson L., 2002. Models for predicting wood properties in stems of Picea abies and Pinus sylvestris in Sweden. Scan. J. For. Res. 17: 330–350.

    Article  Google Scholar 

  • Wimmer R. and Grabner M., 2000. A comparison of tree-ring features in Picea abies as correlated with climate. Iawa J. 21: 403–416.

    Google Scholar 

  • Yasue K., Funada R., Kobayashi O., and Ohtani J., 2000. The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climatic factors. Trees Struct. Funct. 14: 223–229.

    Google Scholar 

  • Zobel B.J. and Van Buijtenen J.P., 1989. Wood variation: its causes and control. Springer-Verlag, Berlin, Heidelberg, 363.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Leban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franceschini, T., Bontemps, JD., Gelhaye, P. et al. Decreasing trend and fluctuations in the mean ring density of Norway spruce through the twentieth century. Ann. For. Sci. 67, 816 (2010). https://doi.org/10.1051/forest/2010055

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2010055

Keywords

Navigation