Skip to main content
Log in

Crack propagation in biodegraded wood

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

  • • Fungal attack in wood involves severe mechanical losses, even in the early stages, due to depolymerisation of polysaccharides. The safety of building components could therefore be affected. It is believed that fracture properties could be much more sensitive to decay than conventionally measured properties, such as weight loss.

  • • In this study, we propose the application of a fracture mechanics test, which measures the fracture toughness, K IC , during the biodegradation process. Two softwoods commonly used in construction, maritime pine and Douglas fir, were inoculated with Poria placenta. Samples were removed twice a week to determine the evolution of the decrease in their mechanical properties.

  • • Toughness was initially greater for maritime pine, but a significant decrease of this property was observed during decay progression, while K IC remained more stable for Douglas fir. For maritime pine there was a loss of 52% of K IC , after 6 weeks of degradation. This species appears to be less durable even with respect to weight loss, which is less sensitive to decay than toughness.

  • • This is a promising test for bio-damage quantification; however, due to the wood heterogeneity, measurement of the true impact of biodegradation is still difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AFNOR, 1994. NF EN 350-1, Durabilité du bois et des matériaux dérivés du bois — Durabilité naturelle du bois massif — Partie 1: Guide des principes d’essai et de classification de la durabilité naturelle du bois. Association Française de Normalisation, La Plaine Saint-Denis, 20 p.

    Google Scholar 

  • AFNOR, 1996. NF EN 113, Produits de préservation du bois — Méthode d’essai pour déterminer l’efficacité protectrice vis-à-vis des champignons basidiomycètes lignivores — Détermination du seuil d’efficacité. Association Française de Normalisation, La Plaine Saint-Denis, 32 p.

    Google Scholar 

  • ASTM-E399, 1990. Standard test method for plane-stain fracture toughness of metallic materials. ASTM International, West Conshohocken, PA, 33 p.

    Google Scholar 

  • Bažant Z.P. and Planas J., 1998. Fracture and size effect in concrete and other quasibrittle materials, CRC Press, Boca Raton, Florida, 640 p.

    Google Scholar 

  • Boatright S.W.J. and Garrett G.G., 1983. The effect of microstructure and stress state on the fracture behaviour of wood. J. Mater. Sci. 18: 2181–2199.

    Article  CAS  Google Scholar 

  • Cartwright K.S.G., Campbell W.G., and Armstrong F.H., 1936. The influence of fungal decay on the properties of timber. I. The effect of progressive decay by Polyporus hispidus, Fr., on the strength of english ash (Fraxinus excelsior, L.). Biol. Sci. 120: 76–95.

    Article  CAS  Google Scholar 

  • Castéra P., Nepveu G., and Chantre G., 1999. Principaux facteurs de contrôle de la variabilité du bois chez le pin maritime (Pinus pinaster Ait.). In: 5e colloque ARBORA: Propriétés et usages du pin maritime, ARBORA, Bordeaux, pp. 91–101.

    Google Scholar 

  • Clausen C.A. and Kartal S.N., 2003. Accelerated detection of brown-rot decay: Comparison of soil block test, chemical analysis, mechanical properties, and immunodetection. For. Prod. J. 53: 90–94.

    CAS  Google Scholar 

  • Clausen C.A. and Yang V., 2007. Protecting wood from mould, decay, and termites with multi-component biocide systems. Int. Biodeter. Biodegr. 59: 20–24.

    Article  CAS  Google Scholar 

  • Donaldson L.A., 1992. Lignin distribution during latewood formation in Pinus radiata D. Don. IAWA Bull. 13: 381–387.

    Google Scholar 

  • Gui Y.Q., Nicholas D.D., and Crawford D., 1996. A miniature mechanical apparatus and test protocol for bending and crushing tests in wood preservation research. For. Prod. J. 46: 77–80.

    CAS  Google Scholar 

  • Humar M., Bucar B., and Pohleven F., 2006. Brown-rot decay of copper-impregnated wood. Int. Biodeter. Biodegr. 58: 9–14.

    Article  CAS  Google Scholar 

  • Irbe I., Andersons B., Chirkova J., Kallavus U., Andersone I., and Faix O., 2006. On the changes of pinewood (Pinus sylvestris L.) Chemical composition and ultrastructure during the attack by brown-rot fungi Poria placenta and Coniophora puteana. Int. Biodeter. Biodegr. 57: 99–106.

    Article  CAS  Google Scholar 

  • Knapic S. and Pereira H., 2005. Within-tree variation of heartwood and ring width in maritime pine (Pinus pinaster Ait.). For. Ecol. Manage. 210: 81–89.

    Article  Google Scholar 

  • Machado J.S. and Cruz H.P., 2005. Within stem variation of maritime pine timber mechanical properties. Holz Roh Werkst. 63: 154–159.

    Article  Google Scholar 

  • Morel S., Dourado N., Valentin G., and Morais J., 2005. Wood: a quasi brittle material, R-curve behavior and peak load evaluation. Int. J. Fract. 131: 385–400.

    Article  Google Scholar 

  • Nepveu G., 1994. Variabilité. In: Jodin P. (Ed.), Le Bois, Matériau d’Ingénierie, ARBOLOR, Nancy, pp. 127–182.

    Google Scholar 

  • Plomion C., Leprovost G., and Stokes A., 2001. Wood formation in trees. Plant Physiol. 127: 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  • Pot D., Chantre G., Rozenberg P., Rodrigues J.C., Jones G.L., Pereira H., Hannrup B., Cahalan C., and Plomion C., 2002. Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait.). Ann. For. Sci. 59: 563–575.

    Article  Google Scholar 

  • Przewloka S.R., 2004. Comparison of rapid decay testing methodologies for the screening of new wood preservatives. PG04-5015, Forest and Wood Products Research and Development Corporation, Denis M Cullity Research Fellowship Report, 88 p.

  • Reiterer A. and Sinn G., 2002. Fracture behaviour of modified spruce wood: a study using linear and non linear fracture mechanics. Holzforschung 56: 191–198.

    Article  CAS  Google Scholar 

  • Ritschkoff A.-C., 1996. Decay mechanisms of brown-rot fungi. VTT Publications No. 268, Technical Research Centre of Finland, Espoo, 105 p.

    Google Scholar 

  • Schniewind A.P. and Centeno J.C., 1973. Fracture toughness and duration of load factor I. Wood Fiber Sci. 5: 152–159.

    Google Scholar 

  • Stanzl-Tschegg S.E., Tschegg E.K., and Teischinger A., 1994. Fracture energy of spruce wood after different drying procedures. Wood Fiber Sci. 26: 467–478.

    CAS  Google Scholar 

  • Stanzl-Tschegg S.E., Tan D.M., and Tschegg E.K., 1996. Fracture resistance to the crack propagation in wood. Int. J. Fract. 75: 347–356.

    Article  Google Scholar 

  • Winandy J.E. and Morrell J.J., 1993. Relationship between incipient decay, strength, and chemical composition of Douglas-fir heartwood. Wood Fiber Sci. 25: 278–288.

    CAS  Google Scholar 

  • Winandy J.E., Clausen C.A., and Curling S.F., 2000. Predicting the effects of decay on wood properties and modeling residual service-life. In: Proc. 2nd annual conference on durability and disaster mitigation in wood-frame housing, Forest Products Society, Madison, WI, pp. 261–263.

    Google Scholar 

  • Winandy J.E. and Lebow P., 2001. Modeling Strength Loss in Wood by Chemical Composition. Part I. an Individual Component Model for Southern Pine. Wood Fiber Sci. 33: 239–254.

    CAS  Google Scholar 

  • Woessner P., 2008. Influence d’un traitement thermique sur la résistance mécanique du bois de pin. M.S. thesis, Université Bordeaux 1, Bordeaux, 126 p.

    Google Scholar 

  • Zabel R.A. and Morrell J.J., 1992. Wood microbiology. Decay and its prevention, San Diego, New York, 476 p.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaud Surini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surini, T., Chaplain, M., Castera, P. et al. Crack propagation in biodegraded wood. Ann. For. Sci. 67, 704 (2010). https://doi.org/10.1051/forest/2010029

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2010029

Keywords

Navigation