Skip to main content
Log in

Is forest mushroom productivity driven by tree growth? Results from a thinning experiment

La productivité des champignons est-elle favorisée par la croissance des arbres? Résultats d’une expérience d’éclaircie

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

  • • Most of the edible forest mushrooms are mycorrhizal and depend on carbohydrates produced by the associated trees. Fruiting patterns of these fungi are not yet fully understood since climatic factors alone do not completely explain mushroom occurrence.

  • • The objective of this study was to retrospectively find out if changing tree growth following an increment thinning has influenced the diversity patterns and productivity of associated forest mushrooms in the fungus reserve La Chanéaz, Switzerland.

  • • The results reveal a clear temporal relationship between the thinning, the growth reaction of trees and the reaction of the fungal community, especially for the ectomycorrhizal species. The tree-ring width of the formerly suppressed beech trees and the fruit body number increased after thinning, leading to a significantly positive correlation between fruit body numbers and tree-ring width.

  • • Fruit body production was influenced by previous annual tree growth, the best accordance was found between fruit body production and the tree-ring width two years previously.

  • • The results support the hypothesis that ectomycorrhizal fruit body production must be linked with the growth of the associated host trees. Moreover, the findings indicate the importance of including mycorrhizal fungi as important players when discussing a tree as a carbon source or sink.

Résumé

  • • La plupart des champignons comestibles des forêts sont mycorhiziens et dépendent des hydrates de carbone produits par les arbres associés. Le processus de fructification de ces champignons n’est pas encore totalement connu. À eux seuls, les facteurs climatiques ne sont pas en mesure d’expliquer l’apparition d’années pauvres ou riches en champignons.

  • • Cette étude a pour but de vérifier, d’une manière rétrospective, si la modification de la croissance des arbres, induite par une mise en lumière suite à une éclaircie, influence la diversité et la productivité des champignons dans la réserve mycologique de La Chanéaz en Suisse.

  • • Les résultats montrent une relation temporelle nette entre l’éclaircie, la réaction de croissance des arbres et la réaction des communautés de champignons, spécialement pour les espèces ectomycorhiziennes. Nous avons observé une augmentation tant de la largeur des cernes des hêtres autrefois dominés que du nombre de carpophores, conduisant à une corrélation positive entre les deux variables.

  • • La production de carpophores était influencée par la croissance annuelle précédente des arbres. La meilleure concordance a été trouvée entre la production de carpophores et la largeur des cernes deux ans auparavant.

  • • Les résultats sont en accord avec l’hypothèse que la production de carpophores des champignons mycorrhiziens est liée à la croissance des arbres associés. En outre, les résultats montrent qu’il est essentiel de tenir compte du rôle important des champignons mycorhiziens lorsqu’on débat de l’arbre en tant que source ou puits de carbone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnolds E., Opdam A., Van Steenis W., and De Fries B., 1994. Mycocoenology of stands of Fagus sylvatica L. in the northeastern Netherlands. Phytocoenologia 24: 507–530.

    Google Scholar 

  • Ayer F., Zingg A., Peter M., and Egli S., 2006. Effets de la densité des tiges des pessières de substitution sur la diversité et la productivité des macromycètes d’une forêt du Plateau suisse. Rev. For. Fr. LVIII 5: 433–448.

    Google Scholar 

  • Ballard T.M., 2000. Impacts of forest management on northern forest soils. For. Ecol. Manage. 133: 37–42.

    Article  Google Scholar 

  • Bonet J.A., Pukkala T., Fischer C.R., Palahi M., de Aragon J.M., and Colinas C., 2008. Empirical models for predicting the production of wild mushrooms in Scots pine (Pinus sylvestris L.) forests in the Central Pyrenees. Ann. For. Sci. 65: 206.

    Article  Google Scholar 

  • Buée M., Maurice J.-P., Marçais B., Dupouey J.-L., Garbaye J., and le Tacon F., 2005. Effet des interventions sylvicoles sur les champignons sylvestres. Forêt-Entreprise 164: 26–32.

    Google Scholar 

  • Cranswick A.M., 1979. Food reserves of Douglas fir trees defoliated by Lepidopterous larvae in Kaningaroa SF. Forest Research Institute Internal Report No. 13. Prod. For. Div. Rotorua, N.Z.

  • Danell E. and Camacho F.J., 1997. Successful cultivation of the golden chanterelle. Nature 385: 303.

    Article  CAS  Google Scholar 

  • Fortin J.A., Plenchette C., and Piché Y., 2008. Les mycorhizes, la nouvelle révolution verte. Édition Multimondes, Québec, Canada, 131 p.

    Google Scholar 

  • Gehring C.A. and Whitham T.G., 2002. Mycorrhiza-Herbivore interactions: population and community consequences. In: van der Heijden M.G.A. and Sanders I. (Eds.), Mycorrhizal Ecology, Ecological Studies, Vol. 157, Springer Verlag, Berlin, pp. 295–316.

    Google Scholar 

  • Hacskaylo E., 1965. Telephora terrestris and mycorrhizae of Virginia pine. For. Sci. 11: 401–404.

    Google Scholar 

  • Hintikka V., 1988. On the macromycete flora in oligotrophic pine forests of different ages in South Finland. Acta Bot. Fenn. 136: 89–94.

    Google Scholar 

  • Högberg P., Nordgren A., Buchmann N., Taylor A.F.S., Ekblad A., Högberg M.N., Nyberg G., Ottosson-Löfvenius M., and Read D.J., 2001. Large-scale forest girdling shows that current photosynthesis drives soil repiration. Nature 411: 789–792.

    Article  PubMed  Google Scholar 

  • Högberg P., Högberg M.N., Göttlicher S.G., Betson N.R., Keel S.G., Metcalfe D.B., Campbell C., Schindlbacher A., Hurry V., Lundmark T., Linder S., and Näsholm T., 2008. High temporal resolution tracing photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol. 177: 220–228.

    PubMed  Google Scholar 

  • Holec J., 1992. Ecology of macrofungi in the beech woods of the Sumava mountains and Sumava foothills. Ceska Mykologia 46: 163–198.

    Google Scholar 

  • Kranabetter J.M. and Kroeger P., 2001. Ectomycorrhizal mushroom response to partial cutting in a western hemlock — western redcedar forest. Can. J. For. Res. 31: 978–987.

    Article  Google Scholar 

  • Krieglsteiner G.J., 1991. Verbreitungsatlas der Großpilze Deutschlands. Band 1, Ulmer, Stuttgart, 596 p.

    Google Scholar 

  • Kropp B.R. and Albee S., 1996. The effects of sylvicultural treatments on occurence of mycorrhizal sporocarps in a Pinus contortea forest: a preliminary study. Biol. Conserv. 78: 313–318.

    Article  Google Scholar 

  • Kuikka K., Härmä E., Markkola A., Rautio P., Roitto M., Saikkonen K., Ahonen-Jonnarth U., Finlay R., and Tuomi J., 2003. Severe defoliation of Scots pine reduces reproductive investment by ectomycorrhizal symbionts. Ecology 84: 2051–2061.

    Article  Google Scholar 

  • Lamhamedi M.S., Godbout C., and Fortin J.A., 1994. Dependence of Laccaria bicolor basidiome development on current photosynthesis of Pinus strobes seedlings. Can. J. For. Res. 24: 1797–1804.

    Article  Google Scholar 

  • Last F.T., Pelham J., Mason P.A., and Ingleby K., 1979. Influence of leaves on sporophore production by fungi forming sheating mycorrhizas with Betula spp. Nature 280: 168–169.

    Article  Google Scholar 

  • Li M.H., Hoch G., and Körner C., 2002. Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline. Trees 16: 331–337.

    Article  CAS  Google Scholar 

  • Luoma D.L., Eberhart J., Molina R., and Amaranthus M.P., 2004. Response of ectomycorrhizal fungus sporocarp production to varying levels and patterns of green-tree retention. For. Ecol. Manage. 202: 337–354.

    Article  Google Scholar 

  • Moser M., 1978. Die Röhrlinge und Blätterpilze. Gustav Fischer Verlag, Stuttgart, 532 p.

    Google Scholar 

  • Ogaya R. and Penuelas J., 2005. Decreased mushroom production in a holm oak forest in response to an experimental drought. Forestry 78: 279–283.

    Article  Google Scholar 

  • Ohenoja E., 1988. Effect of forest management procedures on fungal fruit body production in Finland. Acta Bot. Fenn. 136: 81–84.

    Google Scholar 

  • Pilz D., Molina R., and Liegel L., 1998. Biological productivity of chanterelle mushrooms in and near the Olympic Peninsula Biosphere Reserve. Ambio 9: 8–13.

    Google Scholar 

  • Pilz D., Molina R., and Mayo J., 2006. Effect of thinning young forests on Chanterelle mushroom production. J. For. Ecol. 104: 9–14.

    Google Scholar 

  • Rinn F., 2003. TSAP-Win, Time series analysis and presentation for dendrochronology and related application. User reference. Rinn Tech Heidelberg, p. 91.

  • R Development Core Team, 2007. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

    Google Scholar 

  • Schweingruber F.H., 1983. Der Jahrring; Methodik, Zeit und Klima in der Dendrochronologie. Bern, Haupt Verlag, p. 234.

    Google Scholar 

  • Senn-Irlet B., Bieri G., and Egli S., 2007. Rote Liste Grosspilze. Rote Liste der gefährdeten Arten der Schweiz. Umwelt-Vollzug Nr. 0718, Bundesamt für Umwelt, Bern und Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL, Birmensdorf, p. 92.

  • Shaw P.J.A., Kibby G., and Mayes J., 2003. Effects of thinning treatment on an ectomycorrhizal succession under Scots pine. Mycol. Res. 107: 317–328.

    Article  PubMed  Google Scholar 

  • Smith S.E. and Read D.J., 1997. Mycorrhizal Symbiosis. Academic press, London, UK.

    Google Scholar 

  • Straatsma G., Ayer F., and Egli S., 2001. Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycol. Res. 105: 515–523.

    Article  Google Scholar 

  • Waring R.H., 1987. Characteristics of trees predisposed to die. Bioscience 37: 569–574.

    Article  Google Scholar 

  • Wiklund K., Nilsson L.-O., and Jacobsson S., 1995. Effect of irrigation, fertilization, and artificial drought on basidioma production in a Norway spruce stand. Can. J. Bot. 73: 200–208.

    Article  Google Scholar 

  • Yamada A., Ogura T., and Ohmasa M., 2001. Cultivation of mushrooms of edile ectomycorrhizal fungi associated with Pinus densiflora in vitro mycorrhizal synthesis. Mycorrhiza 11: 59–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Egli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egli, S., Ayer, F., Peter, M. et al. Is forest mushroom productivity driven by tree growth? Results from a thinning experiment. Ann. For. Sci. 67, 509 (2010). https://doi.org/10.1051/forest/2010011

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2010011

Keywords

Mots-clés

Navigation