Skip to main content

Advertisement

Log in

Nitrogen mineralization after clearcutting and residue management in a second rotation Eucalyptus globulus Labill. stand in Galicia (NW Spain)

Minéralisation de l’azote après coupe à blanc et gestion des résidus dans la deuxième révolution d’un peuplement d’Eucalyptus globulus Labill. en Galice (nordouest de l’Espagne)

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

  • • The effects of clearcutting and of different slash management procedures on N mineralization were assessed in a Eucalyptus globulus Labill. stand in Galicia (N W Spain). Treatments were no clearcutting (control), clearcutting combined with scattering, scattering + fertilization, windrowing, and two types of slash burning with two levels of severity: broadcast burning and windrow burning. Changes in mineral N were monitored in the soil during the 18 months following the treatments. Eleven years later, the treatment effects were again evaluated during a twelve month period to assess long-term effects.

  • • During the first study period, slash burning led to a marked increase in the contents of N-NH +4 , N-NO 3 and N-mineralization in topsoil layers (0–10 cm). In contrast, clearcutting followed by either scattering or windrowing of residues had no effect on mineral N in the top soil or in situ mineralization, relative to the control. Ammonium was the predominant form of mineral N. No residual effects of the treatments were detected eleven years later.

  • • Fire severity, in relation to slash burn type, had significant negative effects on post-burn N mineralization and nitrification in the first period studied, but no long-term residual effects were observed. Some practical consequences for sustainable management of such stands are suggested.

Résumé

  • • Les effets de la coupe à blanc et des différentes procédures de gestion des résidus d’exploitation sur la minéralisation de l’azote ont été évalués dans un peuplement d’Eucalyptus globulus Labill. en Galice (nord-ouest Espagne). Les traitements ont été : pas de coupe à blanc (témoin), coupe à blanc combinée avec dispersion, dispersion + fertilisation, andainage, et deux types d’écobuage à deux niveaux de gravité : incinération par surface et incinération des andains. Les changements en azote minéral ont été suivis dans le sol pendant les 18 mois suivant les traitements. Onze ans plus tard, les effets des traitements ont été de nouveau évalués au cours d’une période de douze mois pour déterminer les effets à long terme.

  • • Au cours de la première période d’études, l’écobuage a conduit à une nette augmentation de la teneur de N-NH +4 , N-NO 3 , et à la minéralisation de l’azote dans la couche supérieure du sol (0–10 cm). En revanche, la coupe à blanc suivie d’une dispersion ou d’andainage de résidus n’a eu aucun effet sur l’azote minéral dans la partie supérieure du sol ou sur la minéralisation in situ, par rapport au témoin. L’ammonium a été la forme prédominante de l’azote minéral. Onze ans plus tard, il n’a pas été détecté d’effets résiduels des traitements.

  • • La gravité des incendies, en relation avec le type d’écobuage, a eu des effets négatifs importants sur la minéralisation de l’azote et la nitrification après le feu dans la première période étudiée, mais des effets résiduels à long terme n’ont pas été observés. Certaines des conséquences pratiques pour la gestion durable de ces peuplements sont proposées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams M.A. and Attiwill P.M., 1991. Nutrient balance in forests of northern Tasmania.2. Alteration of nutrient availability and soil-water chemistry as a result of logging, slash burning and fertilizer application. For. Ecol. Manage. 7: 241–248.

    Article  Google Scholar 

  • Almendros G., González-Vila F.J., and Martín F., 1990. Fire induced transformations on soil organic matter from an oak forest: an experimental approach to the effects of fire in humic substances. Soil Sci. 149: 158–168.

    Article  CAS  Google Scholar 

  • Binkley D. and Hart S.C., 1989. The components of nitrogen availability assessments in forest soils. Adv. Soil Sci. 10: 57–112.

    CAS  Google Scholar 

  • Binkley D., Bell R., and Sollins P., 1992. Comparison of methods for estimating soil nitrogen transformations in adjacent conifer and alderconifer forests. Can. J. For. Res. 22: 858–863.

    Article  CAS  Google Scholar 

  • BMDP.1990. BMDP Statistical Software Inc. Los Angeles. USA.

  • Bremner J.M., 1965. Inorganic forms of nitrogen. In: Black et al. (Eds.), Methods of soil analysis. Part 2., Am. Soc. Agrom. Madison. Wis. Agronomy 9: 1179–1237.

  • Choromanska U. and De Luca T.H., 2001. Prescribed fire alters the impact of wildfire on soil biochemical properties in a ponderosa pine forest. Soil Sci. Soc. Am. J. 65: 232–238.

    Article  CAS  Google Scholar 

  • Dambrine E., Vega J.A., Taboada T., Rodríguez L., Fernández C., Macías F., and Gras J.M., 2000. Bilans d’eléments minéraux dans de petits bassins versants forestiers de Galice (NW Espagne). Ann. For. Sci. 57: 23–38.

    Article  Google Scholar 

  • De Luca T.H. and Zouhar K.L., 2000. Effects of selection harvest and prescribed fire on the soil nitrogen status of ponderosa pine forests. For. Ecol. Manage. 138: 263–271.

    Article  Google Scholar 

  • Ellingson L.J., Kauffman J.B., Cummings D.L., Standford R.L. Jr, and Jaramillo V.J., 2000. Soil N dynamics associated with deforestation, biomass burning and pasture conversion in a Mexican tropical dry forest. For. Ecol. Manage. 137: 41–51.

    Article  Google Scholar 

  • Fernández C., 2002. Influencia de actuaciones selvícolas y perturbaciones en el balance hídrico y dinámica de nutrientes en cuencas experimentales. Su conexión con la sostenibilidad de la selvicultura intensiva en especies forestales de crecimiento rápido en Galicia. Phis. Diss. Vigo University, 508 p.

  • Fernández C., Vega J.A., Gras J.M., Fonturbel T., Cuiñas P., Dambrine E., and Alonso, M., 2004. Soil erosion after Eucalyptus globulus clearcutting: differences between logging slash disposal treatments. For. Ecol. Manage. 195 (1–2): 85–95.

    Article  Google Scholar 

  • Fritze H., Pennanen T., and Pietikäinen J., 1992. Recovery of soil microbial biomass and activity from prescribed burning. Can. J. For. Res. 23: 1286–1290.

    Article  Google Scholar 

  • Giardina C.P. and Rhoades C.C., 2001. Clear cutting and burning affect nitrogen supply, phosphorus fractions and seedling growth in soils from a Wyoming lodgepole pine forest. For. Ecol. Manage. 140: 19–28.

    Article  Google Scholar 

  • Giovannini G., Lucchesi S., and Giachetti M., 1990. Effects of heating on some chemical parameters related to soil fertility and plant growth. Soil Sci. 149: 344–350.

    Article  CAS  Google Scholar 

  • Gómez-Rey M.X., Vasconcelos E., and Madeira M., 2007. Lysimetric study of eucalypt residue management effects on N leaching and mineralization. Ann. For. Sci. 64: 699–706.

    Article  Google Scholar 

  • Idol T.W., Pope P.E., and Ponder Jr. F., 2003. N mineralization, nitrification, and N uptake across a 100-year chronosequence of upland hardwood forests. For. Ecol. Manage. 176: 509–518.

    Article  Google Scholar 

  • Jussy J.-H., Ranger J., Bienaimé S., and Dambrine E., 2004. Effects of a clear-cut on the in situ nitrogen mineralisation and the nitrogen cycle in a 67-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation. Ann. For. Sci. 61: 297–408.

    Article  Google Scholar 

  • Kempers A.J. 1974. Determination of sub-microquantities of ammonium and nitrates in soils with phenol, sodium, nitroprusside and hypochlorite. Geoderma. 12: 201–206.

    Article  CAS  Google Scholar 

  • Klopatek J.M., Klopatek C.C., and De Bano L.F., 1990. Potential variation of nitrogen transformations in pinyon-juniper ecosystems resulting from burning. Biol. For. Soils. 10: 35–44.

    CAS  Google Scholar 

  • Knoepp J.D., Vose J.M., and Swank W.T., 2004. Long-term soil responses to site preparation burning in the Southern Appalachians. For. Sci. 50: 540–550.

    Google Scholar 

  • Ludwig B., Khanna P.K., Raison R.J., and Jacobsen K.L., 1998. Modelling cation composition of soil extracts under ashbeds following an intense slashfire in a eucalypt forest. For. Ecol. Manage. 103: 9–20.

    Article  Google Scholar 

  • Magill A.H., Aber J.D., Hendriks J.J., Bowden R.D., Stendler P.A., and Melillo, J.M., 1997. Biogeochemical response of forest ecosystems to simulated chronic nitrogen depositions. Ecol. Appl. 7: 402–415.

    Article  Google Scholar 

  • Merino A., Balboa M.A., Rodríguez Soalleiro, R., and Alvarez González J.G., 2005. Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe. For. Ecol. Manage. 207: 325–339.

    Article  Google Scholar 

  • Nishita H. and Haug R.M., 1972. Soil physical and chemical characteristics of heated soils. Soil Sci. 113: 422–430.

    Article  CAS  Google Scholar 

  • O’Connell A.M., Grove T.S., Medham D.S., and Rance S.J., 2004. Impact of harvest residue management on soil nitrogen dynamics in Eucalyptus globulus plantations in south western Australia. Soil Biol. Biochem. 36: 39–48.

    Article  Google Scholar 

  • Pérez-Batallón P., Ouro G., Macías F., and Merino A., 2001. Initial mineralization of organic matter in a forest plantation soil following different logging residue management techniques. Ann. For. Sci. 58: 807–818.

    Article  Google Scholar 

  • Pietikäinen J. and Fritze H., 1995. Clear-cutting and prescribed burning in coniferous forests: comparison of effects on soil fungal and total microbial biomass, respiration and nitrification. Soil Biol. Biochem. 27: 229–240.

    Article  Google Scholar 

  • Raison R.J., 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: A review. Plant Soil. 51: 73–108.

    Article  CAS  Google Scholar 

  • Raison R.J., O’Connell A.M., and Khanna P.K., 1987. Methodology for studying fluxes of soil mineral-N in situ. Soil Biol. Biochem. 19: 521–530.

    Article  CAS  Google Scholar 

  • Raison R.J., O’Connell A.M., Khanna P.K., and Keit H., 1993. Effect of repeated fires on nitrogen and phosphorus budgets and cycling processes in forest ecosystems. In: Trabaud L. and Prodon R. (Eds.), Fire in Mediterranean Ecosystems, CEC, Brussels-Luxembourg, pp. 347–363.

    Google Scholar 

  • Romanyá J., Casals P., and Vallejo V.R., 2001. Short-term effects of fire on soil nitrogen availability in Mediterranean grasslands and shrublands growing in old fields. For. Ecol. Manage. 147: 39–53.

    Article  Google Scholar 

  • Serrasolsas I. and Khanna P.K., 1995. Changes in heated and autoclaved forest soils of S.E. Australia. I. Carbon and nitrogen. Biogeochemistry. 29: 3–24.

    Google Scholar 

  • SPSS, 2004. User’s Manual, Ireland.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Vega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, C., Vega, J.A., Bará, S. et al. Nitrogen mineralization after clearcutting and residue management in a second rotation Eucalyptus globulus Labill. stand in Galicia (NW Spain). Ann. For. Sci. 66, 807 (2009). https://doi.org/10.1051/forest/2009076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009076

Keywords

Mots-clés

Navigation