Skip to main content
Log in

Effects of genetic entry and competition by neighbouring trees on growth and wood properties of cloned Norway spruce (Picea abies)

Effets de la part génétique et de la concurrence des arbres voisins sur la croissance et les propriétés du bois de clones d’épicéa (Picea abies)

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

  • • The aim of this work was to study both the effects of genetic entry and competition by neighbouring trees on growth, yield, wood density traits and fibre properties of 20 Norway spruce clones grown in an experimental trial located in southern Finland. The material included 10 Finnish clones, 2 Russian clones and 8 provenance-hybrids clones, the latter ones representing crosses between Finnish and foreign parent trees.

  • • We found that, compared to growth and yield, wood density traits and fibre properties showed, on average, lower phenotypic variations. Moreover, significant differences could be observed among the clones regardless of the trait (p < 0.05). Conversely, on average, no clear differences could be found between Finnish, Russian and provenance-hybrids clones in most of the studied traits.

  • • The marked differences among the clones, and lack of clear differences among the provenances suggested that any ranking, regarding different traits, should be based on individual clones. The phenotypic correlations between different traits ranged from moderate to strong suggesting that selection based on one trait would affect other traits. Regardless of clone, the growth of trees (e.g. breast height diameter) decreased and the wood density increased with increasing competition by neighbouring trees, which was expressed by competition index.

Résumé

  • • Le but de ce travail était d’étudier à la fois les effets de la part génétique et de la concurrence des arbres voisins sur la croissance des arbres, la production, les caractéristiques de la densité du bois et les propriétés des fibres de 20 clones d’épicéa cultivés dans un dispositif expérimental d’essai situé dans le sud de la Finlande. Le matériel était constitué de 10 clones finlandais, 2 clones de Russie et de 8 provenances de clones hybrides, ces derniers représentant les croisements entre arbres parents le Finlandais et étrangers.

  • • Nous avons trouvé que, comparativement à la croissance et à la production, la densité du bois et les caractéristiques des propriétés des fibres montraient, en moyenne, de plus faibles variations phénotypiques. En outre, des différences significatives ont pu être observées chez les clones, quel que soit le caractère (p < 0, 05). Inversement, en moyenne, pour la plupart des caractéristiques étudiées, on n’a pas constaté de différences claires entre les clones finlandais, russes et les provenances de clones hybrides.

  • • Les différences marquées entre les clones, et l’absence de différences évidentes entre les provenances ont suggéré que tout classement, en ce qui concerne les différentes caractéristiques, devrait être basé sur des clones individuels. Les corrélations phénotypiques entre les différentes caractéristiques varient de modéré à fort, suggérant que la sélection sur la base d’une caractéristique serait de nature à affecter les autres caractéristiques. Indépendamment des clones, la croissance des arbres (par exemple le diamètre à hauteur de poitrine) a diminué et la densité du bois a augmenté avec l’accroissement de la concurrence des arbres voisins, qui a été exprimée par l’index de concurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergsten U., Lindeberg J., Rindby A., and Evans R., 2001. Batch measurements of wood density on intact or prepared drill cores using X-ray microdensitometry. Wood Sci. Technol. 35: 435–452.

    Article  CAS  Google Scholar 

  • Biging G.S. and Dobbertin M., 1992. A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. For. Sci. 38: 695–720

    Google Scholar 

  • Bujold S.J., Simpson J.D., Beukeveld J.H.J., and Schneider, M.H., 1996. Relative density and growth of eleven Norway spruce provenances in Central New Brunswick. North J. Appl. For. 13(3): 124–128.

    Google Scholar 

  • Cajander A.K., 1926. The Theory of Forests Types, Acta For. Fenn. 29: 1–108.

    Google Scholar 

  • Ekensted F., Grahn T., Hedenberg Ö., Lundqvist S.-O., Arlinger J., and Wilhelmsson L., 2003. Variations in fiber dimensions of Norway spruce and Scots pine. Swedish Pulp and Paper Research Institute, Stockholm, Sweden STFI Report, PUB13, 36 p.

    Google Scholar 

  • Fottland H. and Skrøppa T., 1989. The IUFRO 1964/68 provenance experiment with Norway spruce (Picea abies) in Norway: variation in mortality and height growth. Meddelelser fra Norsk institutt for skogforskning 43.1: 30 p.

  • Hegyi F., 1974. A simulation model for managing jack-pine stands. In: Fries, G. (Ed.), Growth Models for Tree and Stand Simulation. Royal College of Forestry, Stockholm, Sweden. Res. Note 30, pp. 74–90.

    Google Scholar 

  • Jayawickrama K.J.S., McKeand S.E., Jett J.B., and Wheeler E.A., 1997. Date of earlywood-latewood transition in provenances and families of loblolly pine, and its relationship to growth phenology and juvenile wood specific gravity. Can. J. For. Res. 27: 1245–1253.

    Article  Google Scholar 

  • Jayawickrama K.J.S., McKeand S.E., and Jett J.B., 1998. Phenological variation in height and diameter growth in provenances and families of loblolly pine. New For. 16: 11–25.

    Article  Google Scholar 

  • Laasasenaho J., 1982. Taper curve and volume functions for pine, spruce and birch. Commun. Inst. For. Fenn. 108: 1–74.

    Google Scholar 

  • Mäkinen H., 1997. Possibilities of competition indices to describe competitive differences between Scots pine families. Silva Fenn. 31: 43–52.

    Google Scholar 

  • Mäkinen H., Saranpää P., and Linder S., 2002a. Wood-density variation of Norway spruce in relation to nutrient optimization and fibre dimensions. Can. J. For. Res. 32: 185–194.

    Article  Google Scholar 

  • Mäkinen H., Saranpää P., and Linder S., 2002b. Effect of growth rate on fibre characteristics in Norway spruce (Picea abies (L.) Karst.). Holzforschung 56: 449–460.

    Article  Google Scholar 

  • Persson B. and Persson A., 1997. Variation in stem properties in a IUFRO 1964/1968 Picea abies provenance experiment in Southern Sweden. Silvae Genet. 2–3: 94–101.

    Google Scholar 

  • Pukkala T., 1989. Methods to describe the competition process in a tree stand. Scand. J. For. Res. 4: 187–202.

    Article  Google Scholar 

  • Schütz J.P., 1989. Zum Problem der Konkurrenz in Mischbeständen. Schweiz. Z. Forstwes. 140: 1069–1083.

    Google Scholar 

  • Skrøppa T. and Magnussen S., 1993. Provenance variation in shoot growth components of Norway spruce. Silvae Genet. 42: 111–119.

    Google Scholar 

  • Skrøppa T., Hylen G., and Dietrichson J., 1999. Relationships between wood density components and juvenile height growth and growth rhythm traits for Norway spruce provenances and families. Silvae Genet. 48: 235–239.

    Google Scholar 

  • Ståhl E. 1998. Changes in wood and stem properties of Pinus sylvestris caused by provenance transfer. Silva Fenn. 32: 163–172.

    Google Scholar 

  • Steffenrem A., Saranpää P., Lundqvist S.O., and Skroppa T. 2007. Variation in wood properties among five full-sib families of Norway spruce (Picea abies.) Ann. For. Sci. 64: 799–806.

    Article  Google Scholar 

  • Tomé M. and Burkhart H.E., 1989. Distance-dependent competition measures for predicting growth of individual trees. For. Sci. 35: 816–831.

    Google Scholar 

  • Tyrväinen J., 1995. Wood and fiber properties of Norway spruce and its suitability for thermomechanical pulping. Acta For. Fenn. 249: 1–155.

    Google Scholar 

  • Wang T., Aitken S.N., Rozenberg P., and Millie F., 2000. Selection for improved growth and wood density in Lodgepole pine: effects on radial patterns of wood variation. Wood Sci. Technol. 32: 391–403.

    CAS  Google Scholar 

  • Wilhelmsson L., Arlinger J., Spångberg K., Lundqvist S-O., Grahn T., Hedenberg Ö., and Olsson L., 2002. Models for predicting wood properties in stems of Picea abies and Pinus sylvestris in Sweden. Scand. J. For. Res. 17: 330–350.

    Article  Google Scholar 

  • Zhang S.Y. and Morgenstern E.K., 1995. Genetic variation and inheritance of wood density in black spruce (Picea mariana) and its relationship with growth: implications for tree breeding. Wood Sci. Technol. 30: 63–75.

    Article  Google Scholar 

  • Zobel B.J. and van Buijtenen J.P., 1989. Wood variation: Its causes and control. Springer-Verlag, Berlin, Germany, 363 p.

    Google Scholar 

  • Zobel B.J. and Jett J.B., 1995. Genetics of wood production, Springer-Verlag, Berlin.

    Google Scholar 

  • Zubizarreta Gerendiain A., Peltola H., Pulkkinen P., Jaatinen R., Pappinen A., and Kellomäki S., 2007. Differences in growth and wood property traits in cloned Norway spruce (Picea abies). Can. J. For. Res. 37: 2600–2611.

    Article  Google Scholar 

  • Zubizarreta Gerendiain A., Peltola H., Pulkkinen P., Jaatinen R., and Pappinen A., 2008. Differences in fibre properties in cloned Norway spruce (Picea abies). Can. J. For. Res. 38: 1071–1082.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ane Zubizarreta Gerendiain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubizarreta Gerendiain, A., Peltola, H., Pulkkinen, P. et al. Effects of genetic entry and competition by neighbouring trees on growth and wood properties of cloned Norway spruce (Picea abies). Ann. For. Sci. 66, 806 (2009). https://doi.org/10.1051/forest/2009075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009075

Keywords

Mots-clés

Navigation