Skip to main content

Effects of a spruce budworm outbreak on element export below the rooting zone: a case study for a balsam fir forest

Effets d’une attaque de tordeuse des bourgeons de l’épinette sur l’exportation d’éléments au-dessous de la zone racinaire : une étude de cas dans une forêt de sapins baumiers

Abstract

  • • Spruce budworm outbreaks are among the major natural disturbances affecting the dynamics and functioning of Canadian boreal forests. However, the element losses potentially associated with spruce budworm outbreaks have not been quantified.

  • • We evaluated the influence of spruce budworm outbreaks on nutrient export from boreal forest soils by comparing nutrient leaching losses during a spruce budworm outbreaks episode (1981–1984) to an unperturbed period (1999–2003) in a calibrated catchment located in a balsam fir forest.

  • • Nutrient soil leaching losses were significantly higher during the spruce budworm outbreaks (1981–1984) for N-NO3 (30.1 fold), K (8.3 fold), N-NH4 (6.2 fold), Mg (2.7 fold) and SO4 (2.2 fold), as compared to an unperturbed period (1999–2003). When the recurrence of spruce budworm outbreaks (33 years) and a plausible average length of such events (5 years) are taken into consideration, it is estimated that in the long term, 5.6 more NO3, 1.5 more K and 1.2 more NH4 are leached from the soil profile during outbreaks.

  • • The important leaching losses during spruce budworm outbreaks, when added to the losses due to tree harvesting and fire (and acid deposition for K), may have considerable effects on soil fertility and ecosystem sustainability.

Résumé

  • • Les épidémies de la tordeuse des bourgeons de l’épinette sont parmi les principales perturbations naturelles qui affectent la dynamique et le fonctionnement des forêts boréales canadiennes. Toutefois, les éléments potentiellement perdus associés à une épidémie de la tordeuse des bourgeons de l’épinette n’ont pas été quantifiés.

  • • Nous avons évalué l’influence des épidémies de tordeuse des bourgeons de l’épinette sur l’exportation des éléments nutritifs des sols de la forêt boréale, en comparant les pertes par lessivage des éléments nutritifs au cours d’un épisode d’épidémie de la tordeuse des bourgeons de l’épinette (1981–1984) à une période non perturbée (1999–2003) dans un bassin versant calibré situé dans une forêt de sapin baumier.

  • • Les pertes par lessivage des éléments nutritifs du sol ont été significativement plus élevées au cours de l’épidémie de la tordeuse des bourgeons de l’épinette (1981–1984) pour N-NO3 (30,1 fois), K (8,3 fois), N-NH4 (6,2 fois), Mg (2,7 fois) and SO4 (2,2 fois), de N-NO3 (par rapport à une période non perturbée (1999–2003). Quand la répétition des épidémies de tordeuse des bourgeons de l’épinette (33 ans) et une durée moyenne plausible de ces événements (5 ans) sont prises en considération, il est estimé que dans le long terme, 5,6 fois plus de NO3, 1,5 fois plus de K et 1,2 fois plus de NH4 sont lessivés du profil du sol durant les épidémies.

  • • Les importantes pertes par lessivage lors des épidémies de tordeuse des bourgeons de l’épinette, ajoutées aux pertes dues à la récolte des arbres et au feu (et des dépôts acides pour K), peuvent avoir des effets considérables sur la fertilité des sols et la durabilité de l’écosystème.

References

  1. Aber J.D. and Driscoll C.T., 1997. Effects of land use, climate variation and N deposition on N cycling and C storage in northern hardwood forests. Global Biochem. Cy. 11: 639–648.

    Article  CAS  Google Scholar 

  2. Arp P.A. and Yin X., 1992. Predicting water fluxes through forests from monthly precipitation and mean monthly air temperature records. Can. J. For. Res. 22: 864–877.

    Article  Google Scholar 

  3. Baldwin I.T., Olson R.K., and Reiners W.A., 1983. Protein binding phenolics and the inhibition of nitrification in subalpine balsam fir soils. Soil Biol. Biochem. 15: 419–423.

    Article  CAS  Google Scholar 

  4. Boulet B., Chabot M., Dorais L., Dupont A., and Gagnon, R., 1996. Entomologie forestière. In: Ordre des ingénieurs forestiers (Ed.), Manuel de foresterie, les Presses de l’Université Laval, Québec, pp. 1008–1043.

  5. Boutin R. and Robitaille G., 1989. Effects of in vitro acidification of a Podzol on the chemistry of percolates and horizons. Inf. Rep. LAU-X-91A, Forestry Canada, Quebec Region.

    Google Scholar 

  6. Christenson L.M., Lovett G.M., Mitchell M.J., and Groffman P.M., 2002. The fate of nitrogen in gypsy moth frass deposited to an oak forest floor. Oecologia 131: 444–452.

    Article  Google Scholar 

  7. Couture S., 1995. Response of the Laflamme Lake watershed, Quebec, to reduced sulphate deposition (1981–1992). Can. J. Fish. Aquat. Sci. 52: 1936–1943.

    Article  Google Scholar 

  8. CRIACC, 2008. Centre de ressources en impacts et adaptation aux changements climatiques. [online]. Available from http://www. criacc.qc.ca/ [accessed August 6 2008].

  9. Crossley D.A. Jr., Gist C.S., Hargrove W.W., Risley L.S., Schowalter T.D., and Seastedt T.R., 1988. Foliage consumption and nutrient dynamics in canopy insects. In: Swank W.T. and Crossley D.A. Jr. (Eds.), Forest hydrology and ecology at Coweeta, Springer-Verlag, New York, pp. 193–205.

    Google Scholar 

  10. Duchesne L., Ouimet R., and Morneau C., 2003. Assessment of sugar maple health based on basal area growth pattern. Can. J. For. Res. 33: 2074–2080.

    Article  Google Scholar 

  11. Duchesne L. and Houle D., 2008. Impact of nutrient removal through harvesting on the sustainability of the boreal forest. Ecol. Appl. 18: 1642–1651.

    PubMed  Article  Google Scholar 

  12. Eshleman K.N., Morgan R.P. II, Webb J.R., Deviney F.A., and Galloway J.N., 1998. Temporal patterns of nitrogen leakage from mid-Appalachian forested watersheds: role of insect defoliation. Water Resour. Res. 34: 2005–2116.

    Article  CAS  Google Scholar 

  13. Fritts H.C., 1976. Tree rings and climate, academic press, London, 567p.

    Google Scholar 

  14. Gouvernement du Québec, 2002. ressources et industrie forestières. Portrait statistique, Édition 2002. Ministère des Ressources Naturelles, 64 p.

  15. Gray D.R., Régnière J., and Boulet B., 2000. Analysis and use of historical patterns of spruce budworm defoliation to forecast outbreak patterns in Quebec. For. Ecol. Manage. 127: 217–231.

    Article  Google Scholar 

  16. Hollinger D.Y., 1986. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees. Oecologia 57: 14–19.

    Google Scholar 

  17. Holmes R.L., 1996. Dendrochronology program library, version 2.0. Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ.

    Google Scholar 

  18. Houle D. and Carignan R., 1992. Sulfur distribution and speciation in soils and aboveground biomass of a boreal coniferous forest. Biogeochem. 16: 63–82.

    CAS  Google Scholar 

  19. Jardon Y. and Morin H., 2003. Périodicité des épidémies de la tordeuse des bourgeons de l’épinette au cours des deux derniers siècles. Can. J. For. Res. 33: 1947–1961.

    Article  Google Scholar 

  20. Johnson, D.W., Murphy, J.D., Walker, R.F., Miller, W.W., and Glass, D.W., 2008. The combined effects of thinning and prescribed fire on carbon and nutrient budgets in a Jeffrey pine forest. Ann. For. Sci. 65: 601.

    Article  Google Scholar 

  21. LeBlanc D.C., 1990. Relationships between breast-height and wholestem growth indices for red spruce on Whiteface Mountain. New York. Can. J. For. Res. 20: 1399–1407.

    Article  Google Scholar 

  22. Lewis G.P., 1998. Response of stream chemistry to forest insect defoliation on the Allegheny High Plateau, Pennsylvania. Ph.D. dissertation, Cornell University, Ithaca, New York.

    Google Scholar 

  23. Likens G.E., Driscoll C.T., Buso D.C., Siccama T.G., Johnson C.E., Ryan D.F., Lovett G.M., Fahey T.J., and Reiners W.A., 1994. The biogeochemistry of potassium at Hubbard Brook. Biogeochemistry 25: 61–125.

    Article  CAS  Google Scholar 

  24. Lovett G.M., Christenson L.M., Groffman P.M., Jones C.G., Hart J., and Mitchell, M.J., 2002. Insect defoliation and nitrogen cycling in forests. BioScience 52: 335–341.

    Article  Google Scholar 

  25. MacLean D.A., 1990. Impact of forest pests and fire on stand growth and timber yield: implications for forest management planning. Can. J. For. Res. 20: 391–404.

    Article  Google Scholar 

  26. Mitchell M.J., Driscoll C.T., Kahl J.S., Likens G.E., Murdoch P.S., and Pardo L.H., 1996. Climatic control of nitrate loss from forested watersheds in the northeast United States. Environ. Sci. Technol. 30: 2609–2612.

    Article  CAS  Google Scholar 

  27. Morin H., 1994. Dynamics of balsam fir forests in relation to spruce budworm outbreaks in the boreal zone of Quebec. Can. J. For. Res. 24: 730–741.

    Article  Google Scholar 

  28. Morin H., Jardon Y., and Gagnon R., 2007. Effects of insect outbreaks on forest dynamics. In: Johnson E.A. and Miyanishi K. (Eds.), Plant disturbance ecology: the process and the response, Academic Press, pp. 555–564.

  29. Niemi, D. 2004. Emissions of pollutants related to acid deposition in North America. In: Canadian acid deposition science assessment, Meteorological Service of Canada, Environment Canada, pp. 5–14.

  30. Olson R.K. and Reiners W.A., 1983. Nitrification in subalpine balsam fir soils: tests for inhibitory factors. Soil Biol. Biochem. 15: 413–418.

    Article  CAS  Google Scholar 

  31. Ostaff D.P. and MacLean D.A., 1995. Patterns of balsam fir foliar production and growth in relation to defoliation by spruce budworm. Can. J. For. Res. 25: 1128–1136.

    Article  Google Scholar 

  32. Piene, H., 1989. Spruce budworm defoliation and growth loss in young balsam fir: defoliation in spaced and unspaced stands and individual tree survival. Can. J. For. Res. 19: 1211–1217.

    Article  Google Scholar 

  33. Régnière J., 1996. Generalized approach to landscape-wide seasonal forecasting with temperature-driven simulation models. Environ. Entomol. 25: 869–881.

    Google Scholar 

  34. Régnière, J. and R. St-Amant. 2007. Stochastic simulation of daily air temperature and precipitation from monthly normals in North America north of Mexico. Int. J. Biometeorol. 51: 415–430.

    PubMed  Article  Google Scholar 

  35. Reuss J.O. and Johnson D.W., 1985. Effects of soil processes on the acidification of water by acid deposition. J. Env. Qual. 12: 26–31.

    Article  Google Scholar 

  36. Reynolds B.C., Hunter M.D., and Crossley D.A. Jr, 2000. Effects of canopy herbivory on nutrient cycling in a northern hardwood forest in western North Carolina, Selbyana 21: 74–78.

    Google Scholar 

  37. Risley L.S. and Crossley D.A. Jr., 1993. Contribution of herbivore caused greenfall to litterfall N flux in several southern Appalachian forested watersheds. Am. Midl. Nat. 129: 67–74.

    Article  Google Scholar 

  38. Rudebeck A. and Persson T., 2000. Net nitrogen mineralization and net nitrification in European forest soils in response to manipulation of pH. Acta Universitatis Agriculturae Sueciae, Silvestria 145: 20–42.

    Google Scholar 

  39. Schowalter T.D., Hargrove W.W., and Crossley D.A. Jr, 1986. Herbivory in forested ecosystems. Annu. Rev. Entomol. 31: 177–196.

    Article  Google Scholar 

  40. Ste-Marie C. and Paré D., 1999. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol. Biochem. 31: 1579–1589.

    Article  CAS  Google Scholar 

  41. Swank W.T., Waide J.B., Crossley D.A., and Todd R.L., 1981. Insect defoliation enhances nitrate export from forest ecosystems. Oecologia 51: 297–299.

    Article  Google Scholar 

  42. Thibault J.R., Fortin J.A., and Smirnoff W.A., 1982. In vitro allelopathic inhibition of nitrification by balsam poplar and balsam fir. Am. J. Bot. 69: 676–679.

    Article  Google Scholar 

  43. Tukey H.B. and Morgan J.V., 1963. Injury to foliage and its effects upon the leaching of nutrients from above-ground plant parts. Physiol. Planta 16: 557–564.

    Article  Google Scholar 

  44. Webb J.R., Cosby B.J., Deviney F.A., Eshleman K.N., and Galloway J.N., 1995. Change in the acid-base status of an Appalachian catchment following forest defoliation by the gypsy moth. Water Air Soil Pollut. 85: 535–540.

    Article  CAS  Google Scholar 

  45. Wilcoxon, F. 1945. Individual comparisons by ranking methods. Biometrics 1: 80–83.

    Article  Google Scholar 

  46. Yamaguchi D.K., 1991. A simple method for cross-dating increment cores from living trees. Can. J. For. Res. 21: 414–416.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Louis Duchesne.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Houle, D., Duchesne, L. & Boutin, R. Effects of a spruce budworm outbreak on element export below the rooting zone: a case study for a balsam fir forest. Ann. For. Sci. 66, 707 (2009). https://doi.org/10.1051/forest/2009057

Download citation

Keywords

  • boreal forest
  • defoliation
  • soil solution
  • leaching losses
  • nutrient cycles

Mots-clés

  • forêt boréale
  • défoliation
  • solution du sol
  • pertes par lessivage
  • cycles des nutriments