Skip to main content

Genetic correlations among juvenile wood quality and growth traits and implications for selection strategy in Pinus radiata D. Don

Corrélations génétiques entre la qualité du bois juvénile et les caractéristiques de croissance et implications pour la stratégie de sélection de Pinus radiata D. Don

Abstract

  • • Juvenile wood quality in Pinus radiata is affected by factors such as low density, stiffness, and high microfibril angle, spiral grain, and shrinkage. Adverse genetic correlations between growth and wood quality traits remain as one of the main constraints in radiata pine advanced generation selection breeding program.

  • • Juvenile wood property data for this study were available from two progeny tests aged 7 and 6 y. We estimated the genetic correlations between stiffness, density, microfibril angle, spiral grain, shrinkage in the juvenile core and DBH growth in radiata pine, and) to evaluated various selection scenarios to deal with multiple objective traits.

  • • Negative genetic correlations were found for modulus of elasticity (MoE) and density with microfibril angle, spiral grain, shrinkage, and DBH. We observed low to moderate unfavourable genetic correlations between all wood quality traits and DBH growth.

  • • These low to moderate genetic correlations suggest that there may be some genotypes which have high DBH growth performance while also having high wood stiffness and density, and that the adverse correlation between DBH and MoE may not entirely prohibit the improvement of both traits. Results indicate that, in the short term, the optimal strategy is index selection using economic weights for breeding objective traits (MAI and stiffness) in radiata pine.

  • • In the long-term, simultaneously purging of the adverse genetic correlation and optimizing index selection may be the best selection strategy in multiple-trait selection breeding programs with adverse genetic correlations.

Résumé

  • • La qualité du bois juvénile chez Pinus radiata est affectée par des facteurs tels que la faible densité, la rigidité, et un angle de microfibrille grand, la fibre torse, et les fentes de retrait. Les mauvaises corrélations génétiques entre la croissance et les caractéristiques de la qualité du bois restent l’une des principaux obstacles à un programme poussé d’amélioration de Pinus radiata. Les données sur les propriétés du bois juvénile pour cette étude étaient disponibles à partir de deux tests de descendance âgés de 7 ans et 6 ans. Nous avons estimé les corrélations génétiques entre la rigidité, la densité, l’angle des microfibrilles, la fibre torse, les fentes de retrait dans le cœur juvénile et la croissance en diamètre à hauteur de poitrine (DBH) de Pinus radiata, et pour évaluer différents scénarios de sélection pour faire face à de multiples caractéristiques objectives.

  • • Des corrélations génétiques négatives ont été trouvées pour le module d’élasticité (MoE) et la densité avec l’angle des microfibrilles, la fibre torse, les fentes de retrait, et la croissance en diamètre à hauteur de poitrine (DBH). Nous avons observé des corrélations génétiques défavorablement faibles à modérées entre toutes les caractéristiques de la qualité du bois et la croissance en diamètre à hauteur de poitrine (DBH).

  • • Ces corrélations génétiques faibles à modérées suggèrent que peut être certains génotypes, ont une croissance importante en diamètre à hauteur de poitrine (DBH) tout en ayant une rigidité et une densité du bois élevée, et que les corrélations défavorables entre DBH et MoE peuvent ne pas interdire entièrement l’amélioration de ces deux caractéristiques. Les résultats indiquent que, dans le court terme, la stratégie optimale est l’index de sélection en utilisant le poids économique pour un objectif d’amélioration des caractéristiques (AMI et rigidité) chez Pinus radiata.

  • • À long terme, à la fois la purge de la corrélation génétique défavorable et l’optimisation de l’index de sélection peut être la meilleure stratégie de sélection multicaractère dans les programmes sélection amélioration ayant des corrélations génétiques défavorables.

This is a preview of subscription content, access via your institution.

References

  • Baltunis B.S., Wu H.X., and Powell M.B., 2007. Inheritance of density, microfibril angle, and modulus of elasticity in juvenile wood of Pinus radiata at two locations in Australia. Can. J. For. Res. 37: 2164–2174.

    Article  Google Scholar 

  • Booker R.E. and Sorensson C.T., 1999. New tools and techniques to determine mechanical wood properties. In: FIEA, wood quality symposium, Emerging technologies for evaluating wood quality for wood processing, Melbourne, 1999.

  • Bulmer M., 1971. Effect of selection on genetic variability. Am. Nat. 105: 201–211.

    Article  Google Scholar 

  • Burdon R.D., Kibblewhite R.P., Walker J.C.F., Megraw R.A., Evans R., and Cown D.J., 2004. Juvenile versus mature wood: a new concept, othoganal to corewood versus outerwood, with special reference to Pinus radiata and P. taeda. For. Sci. 50: 399–415.

    Google Scholar 

  • Burdon R.D. and Low C.B., 1992. Genetic survey of Pinus radiata. 6: Wood properties: variation, heritability, and interrelationships with other traits. N. Z. J. For. Sci. 22: 228–245.

    Google Scholar 

  • Cave I.D. and Walker J.C.F., 1994. Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. For. Prod. J. 44: 43–48.

    Google Scholar 

  • Conner J.K., 2002. Genetic mechanisms of floral trait correlations in a natural population. Nature 420: 407–410.

    PubMed  Article  CAS  Google Scholar 

  • Costa E., Silva J., Wellendorf H., and Pereira H., 1998. Clonal variation in wood quality and growth in young Sitka spruce (Picea sitchensis (Bong) Carr.): estimation of quantitative genetic parameters and index selection for improved pulpwood. Silvae Genet. 47: 20–32.

    Google Scholar 

  • Cotterill P.P. and Dean C.A., 1990. Successful tree breeding with index selection, division of forestry and forest products, CSIRO, Australia. 80 p.

    Google Scholar 

  • Cown D.J., 1992. Juvenile wood (juvenile wood) in Pinus radiata: should we be concerned? N. Z. J. For. Sci. 22: 87–95.

    Google Scholar 

  • Cown D.J. and van Wyk L., 2004. Profitable wood processing — what does it require? Good wood! N. Z. J. For. 49: 10–14.

    Google Scholar 

  • Cown D.J., Young G.D., and Kimberley M.O., 1991. Spiral grain patterns in plantation-grown Pinus radiata. N. Z. J. For. Sci. 21: 206–216.

    Google Scholar 

  • Dean C.A., Cotterill P.P., and Cameron J.N., 1983. Genetic parameters and gains expected from multiple trait selection of radiata pine in eastern Victoria. Aust. For. Res. 13: 271–278.

    Google Scholar 

  • Dungey H.S., Matheson A.C., Kain D., and Evans R., 2006. Genetics of wood stiffness and its component traits in Pinus radiata. Can. J. For. Res. 36: 1165–1178.

    Article  Google Scholar 

  • Evans R. and Ilic J., 2001. Rapid prediction of wood stiffness from microfibril angle and density. For. Prod. 562 51: 53–57.

    Google Scholar 

  • Fylstra D., Lasdon L., Watson J., and Waren A., 1998. Design and use of microsoft excel solver. Interfaces 28: 29–55.

    Article  Google Scholar 

  • Gapare W.J., Hathorn A.D., Kain D., Matheson A.C., and Wu H.X., 2007. Inheritance of spiral grain in the juvenile core of Pinus radiata D. Don. Can. J. For. Res. 37: 116–127.

    Article  Google Scholar 

  • Gapare W.J., Ivković M., Powell M.B., McRae T.A., and Wu H.X., 2008. Genetics of shrinkage in juvenile trees of Pinus radiata D. Don from two test sites in Australia. Silvae Genet. 57: 145–151.

    Google Scholar 

  • Gapare W.J., Wu H.X., and Abarquez A., 2006. Genetic control in the time of transition from juvenile wood to mature wood in Pinus radiata D. Don. Ann. For. Sci. 63: 871–878.

    Article  Google Scholar 

  • Gilmour A.R., Gogel B.J., Cullis B.R., Welham S.J., and Thompson R., 2005. ASReml user guide release 2.0, VSN international Ltd, Hemel Hempstead HP1 1ES, UK.

    Google Scholar 

  • Hannrup B., Elberg I., and Persson A., 2000. Genetic correlations among wood, growth capacity and stem traits in Pinus sylvetris. Scand. J. For. Res. 15: 161–170.

    Article  Google Scholar 

  • Hansen J.K. and Roulund H., 1998. Spiral grain in a clonal trial with Sitka spruce. Can. J. For. Res. 28: 911–919.

    Article  Google Scholar 

  • Ilic J., 2001. Relationship among the dynamic and static elastic properties of air-dry Eucalyptus delegatensis R. Baker. Holz Roh-Werkst. 59: 169–175.

    Article  Google Scholar 

  • Ivković M., Gapare W.J., Abaquez A., Ilic J., Powell M.B., and Wu H.X., 2008. Prediction of wood stiffness, strength, and shrinkage in juvenile wood of radiata pine. Wood Sci. Technol. 43: 237–257.

    Article  Google Scholar 

  • Ivković M., Wu H.X., McRae T.A., and Matheson A.C., 2006b. Developing breeding objective for Pinus Radiata pine structural wood production II: sensitivity analyses. Can. J. For. Res. 36: 2932–2942.

    Article  Google Scholar 

  • Ivković M., Wu H.X., McRae T.A., and Powell M.B., 2006a. Developing breeding objective for Pinus Radiata pine structural wood production I: bio economic model and economic weights. Can. J. For. Res. 36: 2920–2931.

    Article  Google Scholar 

  • Jayawickrama K.J.S., 2001. Genetic parameter estimates for radiata pine in New Zealand and New South Wales: a synthesis of results. Silvae Genet. 50: 45–53.

    Google Scholar 

  • Johnson G.R., Gartner B., and Barbara L., 2006. Genetic variation in basic density and modulus of elasticity of coastal Douglas-fir. Tree Genet. Genomes 3: 25–33.

    Article  Google Scholar 

  • King J.N. and Hansen J., 1997. Cost-effective selection strategies in continued in genetic improvement. In: IUFRO genetics of radiata pine, FRI bulletin No. 203, Rotorua, New Zealand, pp. 192–198.

    Google Scholar 

  • Kingston R.S.T. and Risdon C.J.E., 1961. Shrinkage and density of Australian and other south-west pacific wood. CSIRO division of forest products, technical paper No. 13.

  • Klein T.W., Defries J.C., and Finkbeiner C.T., 1973. Heritability and genetic correlations: standard error of estimates and sample size. Behav. Genet. 3: 355–364.

    PubMed  Article  CAS  Google Scholar 

  • Kumar S., 2004. Genetic parameter estimates for wood stiffness, strength, internal checking, and resin bleeding for radiata pine. Can. J. For. Res. 34: 2601–2610.

    Article  Google Scholar 

  • Kumar S., Dungey H.S., Matheson A.C., 2006. Genetic parameters and strategies for genetic improvement of stiffness in Radiata pine. Silvae Genet. 55: 77–84.

    Google Scholar 

  • Kumar S., Jayawickrama K.J.S., Lee J., and Lausberg M., 2002. Direct and indirect measures of stiffness and strength show high heritability in a wind-pollinated radiata pine progeny test in New Zealand. Silvae Genet. 51: 256–261.

    Google Scholar 

  • Lee S.J., 1997. The genetics of growth and wood density in Sitka spruce estimated using mixed model analysis techniques. Ph.D. thesis, university of Edinburgh, 213 p.

  • Li L. and Wu H.X., 2005. Efficiency of early selection for rotation-aged growth and wood density traits in Pinus radiata. Can. J. For. Res. 35: 2019–2029.

    Article  Google Scholar 

  • Lindström H., Evans R., and Reale M., 2005. Implications of selecting tree clones with high modulus of elasticity. N. Z. J. For. Sci. 35: 50–71.

    Google Scholar 

  • Matheson A.C., Eldridge K.G., Brown A.G., and Spencer D.J., 1986. Wood volume gains from first-generation radiata pine seed orchards, CSIRO division of forest research No. 4.

  • Matheson A.C., Gapare W.J., Illic J., and Wu H.X., 2008. Inheritance and genetic gain in wood stiffness in radiata pine assessed acoustically in young standing trees. Silvae Genet. 57: 56–64.

    Google Scholar 

  • Megraw R.A., Leaf G., and Bremer D., 1998. Longitudinal shrinkage and microfibril angle in loblolly pine. In: Butterfield, B.G. (Ed.), Microfibril angle in wood. Univ. of Canterbury press, Christchurch, New Zealand, pp. 27–61.

    Google Scholar 

  • Myszewski J.H., Bridgewater F.E., Lowe W.J., Byram T.D., and Megraw R.A., 2004., Genetic variation in the microfibril angle of loblolly pine from two test sites. South. J. App. For. 28: 196–204.

    Google Scholar 

  • Rozenberg P. and Cahalan C., 1998. Spruce and wood quality: genetic aspects (a review). Silvae Genet. 46: 270–279.

    Google Scholar 

  • Sanchez L., Yanchuk A.D., and King J.N., 2008. Gametic models for multitrait selection schemes to study variance of response and drift under adverse genetic correlations. Tree Genet. Genomes 4: 201–212.

    Article  Google Scholar 

  • Schneeberger M., Barwick S.A., Crow G.H., and Hammond K., 1992. Economic indices using breeding values predicted by BLUP. J. Anim. Breed. Genet. 107: 180–187.

    Article  Google Scholar 

  • Sokal R.R. and Rohlf F.J., 1995. Biometry, 3th ed., W.H. Freeman, New York, 887 p.

    Google Scholar 

  • Walker J.C.F. and Butterfield B.G., 1996. The importance of microfibril angle for the processing industries. N. Z. J. For. 40: 34–40.

    Google Scholar 

  • Williams E., Matheson A.C., and Harwood C.E., 2002. Experimental design and analysis for tree improvement, 2nd ed., CSIRO publishing, 214 p.

  • Wright P.J. and Eldridge K.G., 1985. Profitability of using seed from the Tallaganda radiata pine seed orchard. APPITA 38: 341–344.

    Google Scholar 

  • Wu H.X. and Matheson A.C., 2002. Quantitative Genetics of growth and form traits in radiata pine. Forestry and forest products technical report No. 138, 133 p.

  • Wu H.X., Powell M.B., Yang J.L., Ivković M., and McRae T.A., 2006. Efficiency of early selection for rotation-aged wood quality traits in radiata pine. Ann. For. Sci. 64: 1–9.

    Article  Google Scholar 

  • Wu H.X., Eldridge K.G., Matheson A.C., Powell M.B., McRae T.A., Butcher T.B., and Johnson I.G., 2008a. Achievements in forest tree improvement in Australia and New Zealand. 8: Successful introduction and breeding of radiata pine in Australia. Aust. For. 70: 215–225.

    Google Scholar 

  • Wu H.X., Ivković M., Gapare W.J., Matheson A.C., Baltunis, B.S., Powell M.B., and McRae T.A., 2008b. Breeding for wood quality and profit in Pinus radiata: a review of genetic parameter estimates and implications for breeding and deployment. N. Z. J. For. Sci. 38: 56–87.

    Google Scholar 

  • Zobel B.J. and van Buijtenen J.P., 1989. Wood variation: it’s causes and control, Springer-Verlag, Berlin, 363 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Washington J. Gapare.

Additional information

Authors contributed equally.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gapare, W.J., Baltunis, B.S., Ivković, M. et al. Genetic correlations among juvenile wood quality and growth traits and implications for selection strategy in Pinus radiata D. Don. Ann. For. Sci. 66, 606 (2009). https://doi.org/10.1051/forest/2009044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009044

Keywords

  • radiata pine
  • wood quality
  • genetic correlation
  • index selection
  • selection strategy

Mots-clés

  • Pinus radiata
  • qualité du bois
  • corrélation génétique
  • index de sélection
  • stratégie de sélection