Skip to main content
Log in

Effects of the lateral growth rate on wood quality of Gmelina arborea from 3.5-, 7- and 12-year-old plantations

Effet du taux radial de croissance sur la qualité du bois de Gmelina arborea provenant de plantations de 3,5, 7 et 12 ans

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

  • • Awareness of the shortage of fossil resources leads to an increasing demand for woody biomass. We investigated the feasibility of using fast-growing Gmelina arborea wood for material production. Gmelina arborea wood samples were collected from trees of varying cambium ages in Indonesia, from 3.5-, 7- and 12-year-old plantations.

  • • The lateral growth rate and the cambium age did not significantly affect the longitudinal released strain of the growth stress, xylem density, or microfibril angle at the outermost surface of the secondary xylem at any sampling site. However, fiber length in the 3.5-year-old plantation tended to be shorter in smaller diameter trees, whereas in larger diameter trees it was almost the same as that in trees from the 7- and 12-year-old plantations. This suggests that smaller diameter trees in the 3.5-year-old plantation had not yet produced mature wood.

  • • Xylem qualities had already reached values appropriate for harvesting, except in the smaller diameter trees from the 3.5-year-old plantation. This indicates that the larger diameter trees had already matured, regardless of their cambium age. These results suggest that the next step is to develop silvicultural treatments to increase the lateral growth rate during the early growing stage, in order to produce as much mature wood as possible, as quickly as possible.

Résumé

  • • La prise de conscience de la raréfaction des ressources fossiles conduit à une demande croissante de biomasse ligneuse. Dans ce contexte nous avons examiné la faisabilité d’utiliser une essence à croissance rapide Gmelina arborea pour la production de bois matériau.Nous avons collecté en Indonésie des échantillons de bois dans des arbres provenant de plantations de 3,5, 7 et 12 ans.

  • • Pour tous les sites, le taux de croissance radiale et l’âge cambial n’affectent pas les déformations résiduelles longitudinales des contraintes de croissance, la densité du xylème ou l’angle des microfibrilles de la périphérie du xylème secondaire. Cependant pour les petits arbres de la plantation de 3,5 ans, les fibres sont plus courtes tandis que pour les gros arbres les fibres ont une longueur comparable à celle des arbres des plantations de 7 et 12 ans. Cela suggère que les petits arbres de la plantation de 3,5 ans ne produisent pas encore du bois mature.

  • • Les qualités du xylème ont facilement atteint des valeurs justifiant l’exploitation exception faite des petits arbres de la plantation de 3,5 ans. Cela indique que les gros arbres sont déjà matures indépendamment de leur âge. Ces résultats suggèrent que l’étape suivante est le développement de traitements sylvicoles visant à augmenter le taux de croissance radiale durant le stade initial de croissance, dans le but de produire le plus rapidement possible le plus de bois adulte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer R.R., 1986. Growth stresses and strains in trees, Springer-Verlag, New York, 244 p.

    Google Scholar 

  • Baba K., Ona T., Takabe K., Itoh T., and Ito K., 1996. Chemical and anatomical characterization of the tension wood of Eucalyptus camaldulensis L. Mokuzai Gakkaishi 42: 795–798.

    CAS  Google Scholar 

  • Barnett J.R. and Bonham V.A., 2004. Cellulose microfibril angle in the cell wall of wood fibres. Biol. Rev. 79: 461–472.

    Article  PubMed  CAS  Google Scholar 

  • Cave I.D., 1966. Theory of X-ray measurement of microfibril angle. For. Prod. J. 16: 37–42.

    Google Scholar 

  • Cheng Z., Fujiwara S., Ohtani Y., and Sameshima K., 2000. A new method of sample preparation for kenaf bast fiber length analysis with automated fiber length analyzer. Holzforschung 54: 213–218.

    Article  CAS  Google Scholar 

  • Dvorak W.S., 2004. World view of Gmelina arborea: opportunities and challenges. New For. 28: 111–126.

    Article  Google Scholar 

  • IPCC Special Report, 2006. Carbon Dioxide Capture and Storage Summary for Policymakers, Web version, Intergovernmental Panel on Climate Change.

  • Kollmann F.P. and Cote Jr W.A., 1968. Principles of wood science and technology solid wood, Springer-Verlag, Berlin-Heidelberg-New York, 247 p.

    Google Scholar 

  • Kubler H., 1987. Growth stresses in trees and related wood properties. For. Prod. Abs. 10: 61–119.

    Google Scholar 

  • Meylan B.A., 1967. Measurement of microfibril angle by X-ray diffraction. For. Prod. J. 17: 51–58.

    Google Scholar 

  • Morataya R., Galloway G., Berninger F., and Kanninen M., 1999. Foliage biomass — sapwood (area and volume) relationships of Tectona gtandis L.F. and Gmelina arborea Roxb.: silvicultural implications. For. Ecol. Manage. 113: 231–239.

    Article  Google Scholar 

  • Okuyama T. and Sasaki Y., 1979. Crooking during lumbering due to residual stresses in the tree. Mokuzai Gakkaishi 25: 681–687.

    Google Scholar 

  • Okuyama T., Sasaki Y., Kikata Y., and Kawai N., 1981. Seasonal change in growth stress in tree trunks. Mokuzai Gakkaishi 27: 681–687.

    Google Scholar 

  • Okuyama T., Yamamoto H., Iguchi M., and Yoshida M., 1990. Generation process of growth stresses in cell walls II. Growth stresses in tension wood. Mokuzai Gakkaishi 36: 797–803.

    Google Scholar 

  • Okuyama T., Yamamoto H., Yoshida M., Hattori Y., and Archer R.R., 1994. Growth stresses in tension wood: role of microfibrils and lignification. Ann. Sci. For. 51: 291–300.

    Article  Google Scholar 

  • Okuyama T., Doldan J., Yamamoto H., and Ona T., 2004. Heart splitting at crosscutting of eucalypt logs. J. Wood Sci. 50: 1–6.

    Article  Google Scholar 

  • Onyekwelu J.C., Mosandl R., and Stimm B., 2006. Productivity, site evaluation and state of nutrition of Gmelina arborea plantations in Oluwa and Omo forest reserves, Nigeria. For. Ecol. Manage. 229: 214–227.

    Article  Google Scholar 

  • Piotto D., Montagnini F., Ugalde L., and Kanninen M., 2003. Performance of forest plantations in small and medium-sized farms in Atlantic lowlands of Costa Rica. For. Ecol. Manage. 175: 195–204.

    Article  Google Scholar 

  • Saranpää P., 2003. Wood density and growth. In: Barnett J.R. and Jeronimidis G. (Eds.), Wood Quality and its biological basis, Blackwell publishing Ltd, CRC Press, pp. 87–117.

  • Yamamoto H., Okuyama T., and Iguchi M., 1989. Measurement of surface growth stress in a leaning stem. Mokuzai Gakkaishi 35: 595–601.

    Google Scholar 

  • Yamamoto H., Okuyama T., Sugiyama K., and Yoshida M., 1992. Generation process of growth stresses in cell walls?. Action of the cellulose microfibril upon the generation of the tensile stresses. Mokuzai Gakkaishi 38: 107–113.

    CAS  Google Scholar 

  • Yoshida M. and Okuyama T., 2002. Technique for measuring growth stress on the xylem surface using strain and dial gauges. Holzforschung 56: 461–467.

    Article  CAS  Google Scholar 

  • Wahyudi I., Okuyama T., Hadi Y.S., Yamamoto H., Yoshida M., and Watanabe H., 1999. Growth stress and strain of Acacia mangium. For. Prod. J. 49: 77–81.

    Google Scholar 

  • Wahyudi I., Okuyama T., Hadi Y.S., Yamamoto H., Yoshida M., and Watanabe H., 2000. Relationships between growth rate and growth stresses in Paratherianthes falcataria grown in Indonesia. J. Trop. For. Prod. 6: 95–105.

    Google Scholar 

  • Zhu J.Y., Scott C.T., Scallon K.L., and Myers G.C., 2007. Effect of plantation density on wood density and anatomical properties of red pine. Wood Fiber Sci. 39: 502–512.

    CAS  Google Scholar 

  • Zobel B.J., 1981. Wood quality from fast-grown plantation. Tappi J. 64: 71–74.

    Google Scholar 

  • Zobel B.J. and van Buijtenen J.P., 1989. Wood variation. Its causes and control, Springer-Verlag, Berlin, Germany, 363 p.

    Google Scholar 

  • Zobel B.J. and Jett J.B., 1995. Genetics of Wood Production, Springer-Verlag, Berlin, Germany, 337 p.

    Google Scholar 

  • Zobel B.J. and Sprague J.R., 1998. Juvenile wood in forest trees, Springer-Verlag, Berlin, Germany, 300 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kojima, M., Yamamoto, H., Marsoem, S.N. et al. Effects of the lateral growth rate on wood quality of Gmelina arborea from 3.5-, 7- and 12-year-old plantations. Ann. For. Sci. 66, 507 (2009). https://doi.org/10.1051/forest/2009031

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009031

Keywords

Mots-clés

Navigation