Skip to main content
Log in

Allometric above-belowground biomass equations for Nothofagus pumilio (Poepp. & Endl.) natural regeneration in the Chilean Patagonia

Équations allométriques pour la biomasse aérienne et souterraine pour la régénération naturelle de Nothofagus pumilio en Patagonie chilienne

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

  • • In the present study, allometric biomass equations were developed for Nothofagus pumilio natural regeneration relating foliage, stem and branches (aboveground), roots (belowground), and total biomass to basal diameter and total height, based on destructive measurements of 390 naturally regenerated seedlings and saplings.

  • • Basal diameter was the most important independent variable in all equations and accounted for more than 88% of the variability of the different biomass components. The addition of height as a second independent variable slightly improved the predictions.

  • • The best-fit biomass components equations that were based on combinations of basal diameter and height as independent variables had adjusted R 2 values between 0.80 and 0.95 and a mean percent standard error between 21.3% and 26.6%.

  • • Based on the best-fit biomass equations and the natural regeneration development in a 14-years chronosequence in forests managed under shelterwood cuts, the total biomass varied from 0.9 Mg ha−1 (0.5 Mg ha−1 above and 0.4 Mg ha−1 belowground) for the primary forest, before the shelterwood cuts, to 19.5 Mg ha−1 (13.6 Mg ha−1 above and 5.9 Mg ha−1 belowground) 14 years after the seed cut. In the same period, carbon storage varied, from 0.5 Mg ha−1 to 9.8 Mg ha−1.

Résumé

  • • Dans la présente étude, des équations allométriques ont été élaborées pour prédire la biomasse du feuillage, des tiges, des branches et des racines, ainsi que de la biomasse totale, à partir du diamètre à la base et de la hauteur totale dans une régénération naturelle de Nothofagus pumilio. Des mesures destructives ont été réalisées sur 390 plants régénérés naturellement et de jeunes arbres.

  • • Le diamètre à la base était la plus importante variable indépendante dans toutes les équations et représentait plus de 88 % de la variabilité des différentes composantes de la biomasse. L’ajout de la hauteur en tant que deuxième variable indépendante, a légèrement amélioré les prédictions.

  • • Le meilleur ajustement des équations des composantes de la biomasse, fondées sur des combinaisons du diamètre à la base et de la hauteur comme variables indépendantes, a produit des valeurs de R 2 comprises entre 0,80 et 0,95 et un pourcentage moyen d’erreur standard compris entre 21,3 % et 26,6 %.

  • • En utilisant le meilleur ajustement des équations de biomasse, nous avons établi dans le cas d’une régénération naturelle étudiée à travers une chronoséquence de 14 années dans des forêts gérées en coupes d’abri, que l’accroissement en biomasse totale a varié entre 0,9 Mg ha−1 (0,5 pour les parties aériennes et 0,4 pour les racines) pour la forêt primaire, avant les coupes d’abri, et 19,5 Mg ha−1 (13,6 et 5,9, respectivement) 14 ans après la coupe d’ensemencement. Dans la même période, le stockage du carbone est passé de 0,5 à 9,8 Mg ha−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baskerville G.L., 1972. Use of logarithmic regression in the estimation of plant biomass. Can. J. For. Res. 2: 49–53.

    Article  Google Scholar 

  • Bartsch N. and Rapp C., 1994. Naturverjüngung von Nothofagus pumilio im Lochhieb. Verjüngungsökologische Untersuchungen im nord-patagonischen Bergwald Argentiniens. Forstarchiv 65: 119–130.

    Google Scholar 

  • Bava J., 1999. Los bosques de lenga en Argentina. In: Donoso C. and Lara A. (Eds.), Silvicultura de los bosques nativos de Chile, Editorial universitaria, Santiago de Chile, pp. 273–296.

    Google Scholar 

  • Bloomberg M., Mason E., and Jarvis P., 2008. Predicting seedling biomass of radiata pine from allometric variables. New For. 36: 103–114.

    Article  Google Scholar 

  • Caldentey J., Ibarra M., and Hernández P., 2001. Litter fluxes and decomposition in Nothofagus pumilio stands in the region of Magallanes, Chile. For. Ecol. Manage. 148: 145–157.

    Article  Google Scholar 

  • Cienciala E., Cerny M., Tatarinov F., and Apltauer J., 2006. Biomass functions applicable to Scots pine. Trees 20: 483–495.

    Article  Google Scholar 

  • Cole T.G. and Ewel J.J., 2006. Allometric equations for four valuable tropical tree species. For. Ecol. Manage. 229: 351–360.

    Article  Google Scholar 

  • Cuevas J.G., 2002. Episodic regeneration at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. J. Ecol. 90, 52–60.

    Article  Google Scholar 

  • Geudens G., Staelens J., Kint V., Goris R., and Lust N., 2004. Allometric biomass equations for Scots pine (Pinus sylvestris L.) seedlings during the first years of establishment in dense natural regeneration. Ann. For. Sci. 61: 653–659.

    Article  Google Scholar 

  • Haase R. and Haase P., 1995. Above-ground biomass estimates for invasive trees and shrubs in the Pantanal of Mato Grosso, Brazil. For. Ecol. Manage. 73: 29–35.

    Article  Google Scholar 

  • Jackson N.A., Griffiths H., and Zeroni M., 1995. Above-ground biomass of seedling and semi-mature Sesbania sesban, a multi-purpose tree species, estimated using allometric regressions. Agrofor. Syst. 29: 103–112.

    Article  Google Scholar 

  • Klein D., Fuentes J.P., Schmidt A., Schmidt H., and Schulte A., 2008. Soil organic C as affected by silvicultural and exploitative interventions in Nothofagus pumilio forests of the Chilean Patagonia. For. Ecol. Manage. 255: 3549–3555.

    Article  Google Scholar 

  • Martínez P.G., Lencinas M.V., Peri P.L., and Arena M., 2007. Photosynthetic plasticity of Nothofagus pumilio seedlings to light intensity and soil moisture. For. Ecol. Manage. 243: 274–282.

    Article  Google Scholar 

  • Parresol B., 1999. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 45: 573–593.

    Google Scholar 

  • Parresol B., 2001. Additivity of nonlinear biomass equations. Can. J. For. Res. 31: 865–878.

    Article  Google Scholar 

  • Pastor J., Aber J.D., and Melillo J.M., 1984. Biomass prediction using generalized allometric regressions for some northeast tree species. For. Ecol. Manage. 7: 265–274.

    Article  Google Scholar 

  • Rebertus A.J. and Veblen T.T., 1993. Structure and tree-fall gaps dynamics of old-growth Nothofagus forest in Tierra del Fuego, Argentina. J. Veg. Sci. 4: 641–654.

    Article  Google Scholar 

  • Rosenfeld J.M., Navarro Cerrillo R.M., and Guzman A.J.R., 2006. Regeneration of Nothofagus pumilio [Poepp. Et Endl.] Krasser forests after five years of seed tree cutting. J. Environ. Manage. 78: 44–51.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H., Cruz G., Promis A., and Alvarez M., 2003. Transformación de los bosques de lenga vírgenes e intervenidos a bosques manejados. Universidad de Chile, Facultad de Ciencias Forestales, Publicaciones miscelaneas forestales No. 14, Santiago, Chile, 60 p.

    Google Scholar 

  • Schmidt A., Klein D., Leuthold F., Schmidt H., and Schulte A., 2008. Anteil der Wurzelbiomasse an der Gesamtbaumbiomasse eines Lenga (Nothofagus pumilio) Naturwaldes im chilenischen Teil Patagoniens. Forstarchiv 79: 55–59.

    Google Scholar 

  • Stewart J.L., Dunsdon A.J., Hellin J.J., and Hughes C.E., 1992. Wood biomass estimation of central american dry zone species. Tropical forestry papers No. 26, Oxford/UK, Oxford Forestry Institute.

    Google Scholar 

  • Ter-Mikaelian M. and Korzukhin M., 1997. Biomass equations for sixty-five North American tree species. For. Ecol. Manage. 97: 1–24.

    Article  Google Scholar 

  • Ter-Mikaelian M. and Parker W., 2000. Estimating biomass of white spruce seedlings with vertical photo imagery. New For. 20: 145–162.

    Article  Google Scholar 

  • Veblen T.T., Hill R.S., and Read J., 1996. The ecology and biogeography of Nothofagus forests, Yale University Press, New Haven, 403 p.

    Google Scholar 

  • Verwijst T., 1991. Logarithmic transformation in biomass estimation procedures: violation of the linearity assumption in regression analysis. Biomass Bioenergy 1: 175–180.

    Article  Google Scholar 

  • Wagner R.G. and Ter-Mikaelian M.T., 1999. Comparison of biomass component equations for four species of northern coniferous tree seedlings. Ann. For. Sci. 56: 193–199.

    Article  Google Scholar 

  • Weber M., 2001. Kohlenstoffspeicherung in Lenga-(Nothofagus pumilio) Primärwäldern Feuerlands und Auswirkungen ihrer Überführung in Wirtschaftswald auf den C-Haushalt, Kessel, Remagen, 119 p.

  • Williams R.A. and Mc Clenahen J.R., 1984. Biomass prediction equation for seedlings, sprouts, and saplings of ten central hardwood species. For. Sci. 30: 523–527.

    Google Scholar 

  • Zianis D. and Mencuccini M., 2003. Aboveground biomass relationships for beech (Fagus moesiaca Cz.) trees in Vernio Mountain, Northern Greece, and generalised equations for Fagus sp. Ann. For. Sci. 60: 439–448.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, A., Poulain, M., Klein, D. et al. Allometric above-belowground biomass equations for Nothofagus pumilio (Poepp. & Endl.) natural regeneration in the Chilean Patagonia. Ann. For. Sci. 66, 513 (2009). https://doi.org/10.1051/forest/2009030

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009030

Keywords

Mots-clés

Navigation