Annals of Forest Science

, Volume 66, Issue 5, pp 505–505 | Cite as

Evidence of altitudinal increase in photosynthetic capacity: gas exchange measurements at ambient and constant CO2 partial pressures

  • Caroline C. Bresson
  • Andrew S. Kowalski
  • Antoine Kremer
  • Sylvain DelzonEmail author
Original Article


  • • Because all microclimatic variables change with elevation, it is difficult to compare plant performance and especially photosynthetic capacity at different elevations. Indeed, most previous studies investigated photosynthetic capacity of low- and high-elevation plants using constant temperature, humidity and light but varying CO2 partial pressures (P CO 2).

  • • Using gas exchange measurements, we compared here maximum assimilation rates (A max) at ambient and constant-low-elevation P CO 2for two temperate tree species along an altitudinal gradient (100 to 1600 m) in the Pyrénées mountains.

  • • Significant differences in A max were observed between the CO2 partial pressure treatments for elevations above 600 m, the between-treatment differences increasing with elevation up to 4 μmol m−2 s−1. We found an increase in A max with increasing elevation at constant-low-elevation P CO 2 but not at ambient P CO 2 for both species. Given a 10% change in P CO 2, a proportionally higher shift in maximum assimilation rate was found for both species.

  • • Our results showed that high elevation populations had higher photosynthetic capacity and therefore demonstrated that trees coped with extreme environmental conditions by a combination of adaptation (genetic evolution) and of acclimation. Our study also highlighted the importance of using constant CO2 partial pressure to assess plant adaptation at different elevations.


adaptation altitudinal gradient acclimation partial pressure photosynthetic capacity 

Augmentation de la capacité photosynthétique avec l’altitude: mesures d’échanges gazeux à pressions partielles de CO2 ambiante et constante


  • • Les conditions microclimatiques étant très variables avec l’altitude, il est difficile de comparer les performances d’une espèce végétale à différentes altitudes, particulièrement la capacité photosynthétique. En effet, la plupart des études antérieures ont estimé le taux maximal d’assimilation à basses et hautes altitudes en maintenant la température, l’humidité de l’air et la lumière constantes mais en laissant varier la pression partielle de CO2 (P CO 2).

  • • Afin de comparer le taux maximum d’assimilation (A max) à pressions partielles de CO2 constantes de basse altitude et variables, nous avons effectué des mesures d’échanges gazeux sur deux espèces d’arbres tempérés le long d’un gradient altitudinal de 1600 m de dénivelé dans les Pyrénées françaises.

  • • La différence entre les deux traitements de P CO 2 est significative au-dessus de 600 m d’altitude et atteint un maximum de 4 μmol m−2 s−1. Pour les deux espèces, nous avons mis en évidence une augmentation de A max avec l’altitude à P CO 2 constantes mais pas à P CO 2 ambiantes. Pour une modification de P CO 2 de 10 %, le changement du taux maximum d’assimilation est proportionnellement supérieur chez les deux espèces.

  • • Nos résultats montrent que les populations de hautes altitudes possèdent une capacité photosynthétique supérieure, démontrant que les arbres font face aux conditions environnementales extrêmes grâce à des adaptations génétiques ou des acclimatations. Notre étude souligne ainsi l’importance de fixer la PCO 2 pour comparer l’adaptation des plantes à différentes altitudes.


adaptation acclimatation gradient altitudinal pression partielle capacité photosynthétique 


  1. Benecke U., Schulze E.D., Matyssek R., and Havranek W.M., 1981. Environmental control of C02 assimilation and leaf conductance in Larix decidua Mill. I. A comparison of contrasting natural environments. Oecologia 50: 54–61.CrossRefGoogle Scholar
  2. Chabot B.F. and Hicks D.J., 1982. The ecology of leaf life spans. Annu. Rev. Ecol. Syst. 13: 229–259.CrossRefGoogle Scholar
  3. Cordell S., Goldstein G., Meinzer F.C., and Handley L.L., 1999. Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and delta 13C along an altitudinal gradient. Funct. Ecol. 13: 811–818.CrossRefGoogle Scholar
  4. Cordell S., Goldstein G., Mueller-Dombois D., Webb D., and Vitousek P.M., 1998. Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia 113: 188–196.CrossRefGoogle Scholar
  5. Cornic G. and Louason G., 1980. The effects of O2 on net photosynthesis at low-temperature (5 degree-C). Plant Cell Environ. 3: 149–157.Google Scholar
  6. Decker J.P., 1947. The effect of air supply on apparent photosynthesis. Plant Physiol. 22: 561–571.PubMedCrossRefGoogle Scholar
  7. Delzon S., Bosc A., Cantet L., and Loustau D., 2005. Variation of the photosynthetic capacity across a chronosequence of maritime pine correlates with needle phosphorus concentration. Ann. For. Sci. 62: 537–543.CrossRefGoogle Scholar
  8. Farquhar G.D., von Caemmerer S., and Berry J.A., 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90.CrossRefGoogle Scholar
  9. Field C. and Mooney H.A., 1986. The photosynthesis-nitrogen relationships in wild plants. In: Givnish T.J. (Ed.), On the economy of plant form and function, Cambridge University Press, Cambridge, pp. 25–55.Google Scholar
  10. Friend A.D., Woodward F.I., and Switsur V.R., 1989. Field measurements of photosynthesis, stomatal conductance, leaf nitrogen and delta 13C along altitudinal gradients in Scotland. Funct Ecol. 3: 117–122.CrossRefGoogle Scholar
  11. Gale J., 1972. Availability of carbon dioxide for photosynthesis at high altitudes: theoretical considerations. Ecology 53: 494–497.CrossRefGoogle Scholar
  12. Gonzalez-Real M.M. and Baille A., 2000. Changes in leaf photosynthetic parameters with leaf position and nitrogen content within a rose plant canopy (Rosa hybrida). Plant Cell Environ. 23: 351–363.CrossRefGoogle Scholar
  13. Hovenden M.J. and Brodribb T., 2000. Altitude of origin influences stomatal conductance and therefore maximum assimilation rate in Southern Beech, Nothofagus cunninghamii. Aust. J. Plant Physiol. 27: 451–456.CrossRefGoogle Scholar
  14. Jones H.G., 1983. Plants and microclimate. A quantitative approach to environmental plant physiology, Cambridge University Press, Cambridge, 428 p.Google Scholar
  15. Kao W. and Chang K., 2001. Altitudinal trends in photosynthetic rate and leaf characteristics of Miscanthus populations from central Taiwan. Aust. J. Bot. 49: 509–514.CrossRefGoogle Scholar
  16. Kikuzawa K., 1989. Ecology and evolution of phenological pattern, leaf longevity and leaf habit. Evol. Trends Plants 3: 105–110.Google Scholar
  17. Körner C., 2003. Alpine plant life: functional plant ecology of high mountain ecosystem. Springer-Verlag Berlin Heidelberg, Berlin, 337 p.Google Scholar
  18. Körner C., 2008. The use of “altitude” in ecological research. Trends Ecol. Evol. 22: 569–574.CrossRefGoogle Scholar
  19. Körner C., Bannister P., and Mark A.F., 1986. Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant lifeforms in New Zealand. Oecologia 69: 577–588.CrossRefGoogle Scholar
  20. Körner C. and Cochrane P.M., 1986. Stomatal responses and water relaions of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia 66: 443–455.CrossRefGoogle Scholar
  21. Körner C. and Diemer M., 1987. In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct. Ecol. 1: 179–194.CrossRefGoogle Scholar
  22. Körner C., Neumayer M., Pelaez Menendez-Riedl S., and Smeets-Scheel A., 1989. Functional morphology of mountain plants. Flora 182: 353–383.Google Scholar
  23. Kouwenberg L.L.R., Kürschner W.M., and McElwain J.C., 2007. Stomatal frequency change over altitudinal gradients: prospects for paleoaltimetry. Rev. Mineral. Geochem. 66: 215–241.CrossRefGoogle Scholar
  24. Kowalski A.S. and Serrano-Ortiz P., 2007. On the relationship between the eddy covariance, the turbulent flux, and surface exchange for a trace gas such as CO2. Bound.-Lay. Meteorol. 124: 129–141.CrossRefGoogle Scholar
  25. Lambers H., Chapin F.S., and Pons T.L., 1998. Plant physiological ecology. Springer-verlag, New York, 540 p.Google Scholar
  26. Larcher W., 1969. Physiological plant ecology, Springer-Verlag, 506 p.Google Scholar
  27. Marron N., Brignolas F., Delmotte F.M., and Dreyer E., 2008. Modulation of leaf physiology by age and in response to abiotic constraints in young cuttings of two Populus deltoides × P. nigra genotypes. Ann. For. Sci. 65: 404.CrossRefGoogle Scholar
  28. Kumar N., Kumar S., Vats S.K., and Ahuja P.S., 2006. Effect of altitude on the primary products of photosynthesis and the associated enzymes in barley and wheat. Photosynth. Res. 88: 63–71.PubMedCrossRefGoogle Scholar
  29. Oleksyn J., Modrzynski J., Tjoelker M.G., Zytkowiak R., Reich P.B., and Karolewski P., 1998. Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Funct. Ecol. 12: 573–590.CrossRefGoogle Scholar
  30. Premoli A.C. and Brewer C.A., 2007. Environmental v. genetically driven variation in ecophysiological traits of Nothofagus pumilio from contrasting elevations. Austr. J. Bot. 55: 585–591.CrossRefGoogle Scholar
  31. Rada F., Azocar A., Gonzalez J., and Briceno B., 1998. Leaf gas exchange in Espeletia schultzii Wedd, a giant caulescent rosette species, along an altitudinal gradient in the Venezuelan Andes. Acta Oecol. 19: 73–79.CrossRefGoogle Scholar
  32. Ramonell K.M., Kuang A., Porterfield D.M., Crispi M.L., Xiao Y., McClure G., and Musgrave M.E., 2001. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana. Plant Cell Environ. 24: 419–428.PubMedCrossRefGoogle Scholar
  33. Reich P.B., Walters M.B., and Ellsworth D.S., 1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62: 365–392.CrossRefGoogle Scholar
  34. Rundel P.W., Gibson A.C., Midgley G.S., Wand S.J.E., Palma B., Kleier C., and Lambrinos J., 2003. Ecological and ecophysiological patterns in a pre-altiplano shrubland of the Andean Cordillera in northern Chile. Plant Ecol. 169: 179–193.CrossRefGoogle Scholar
  35. Slatyer R.O. and Morrow P.A., 1977. Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. ex Spreng. I. Seasonal changes under field conditions in the Snowy mountains area of south-eastern Australia. Austr. J. Bot. 25: 1–20.CrossRefGoogle Scholar
  36. Sun J.D., Edwards G.E., and Okita T.W., 1999. Feedback inhibition of photosynthesis in rice measured by O-2 dependent transients. Photosynth. Res. 59: 187–200.CrossRefGoogle Scholar
  37. Terashima I., Masuzawa T., Ohba H., and Yokoi Y., 1995. Is photosynthesis suppressed at higher elevations due to low CO2 pressure? Ecology 76: 2663–2668.CrossRefGoogle Scholar
  38. Tranquillini W., 1964. The physiology of plants at high altitudes. Plant Physiol. 15: 345–362.CrossRefGoogle Scholar
  39. Vitasse Y., Delzon S., Dufrêne E., Pontailler J.Y., Louvet J.M., Kremer A., and Michalet R., in press. Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agr. For. Meteorol. (in Press) DOI:10.1016/j.agrformet.2008.10.019.Google Scholar
  40. Weng J.H. and Hsu F.H., 2001. Gas exchange and epidermal characteristics of Miscanthus populations in Taiwan varying with habitats and nitrogen application. Photosynthetica 39: 35–41.CrossRefGoogle Scholar
  41. Woodward F.I. and Bazzaz F.A., 1988. The response of stomatal density to CO2 partial pressure. J. Exp. Bot. 39: 1771–1781.CrossRefGoogle Scholar
  42. Yin C., Duan B., Wang X., and Li C., 2004. Morphological and physiological responses of two contrasting Poplar species to drought stress and exogenous abscisic acid application. Plant Sci. 167: 1091–1097.CrossRefGoogle Scholar
  43. Zhang H., Wu C.X., Chamba Y., and Ling Y., 2007. Blood characteristics for high altitude adaptation in Tibetan chickens. Poultry Sci. 86: 1384–1389.Google Scholar
  44. Zhang S., Zhou Z., Hu H., Xu K., Yan N., and Li S., 2005. Photosynthetic performances of Quercus pannosa vary with altitude in the Hengduan mountains, southwest China. For. Ecol. Manage. 212: 291–301.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2009

Authors and Affiliations

  • Caroline C. Bresson
    • 1
  • Andrew S. Kowalski
    • 2
    • 3
  • Antoine Kremer
    • 1
  • Sylvain Delzon
    • 1
    Email author
  1. 1.UMR BIOGECOUniversité Bordeaux 1 - INRATalenceFrance
  2. 2.Departamento de Física AplicadaUniversidad de GranadaGranadaSpain
  3. 3.Centro Andaluz del Medio Ambiente (CEAMA)GranadaSpain

Personalised recommendations