Skip to main content
Log in

Diversity of water use efficiency among Quercus robur genotypes: contribution of related leaf traits

Diversité de l’efficience d’utilisation de l’eau entre différents génotypes de Quercus robur : contributions des traits foliaires

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

  • • Previously, a large intra-specific diversity and a tight genetic control have been shown for Δ13C (carbon isotope discrimination) in a pedunculate oak (Quercus robur L.) family, which is an estimator for intrinsic water use efficiency (W i), a complex trait defined as the ratio of net CO2 assimilation rate (A) to stomatal conductance for water vapour (g s ).

  • • In the present study, twelve genotypes with extreme phenotypic values of Δ13C were selected within this family to (i) asses the stability of genotype differences across contrasting environments and for different measures W i; (ii) quantify the relationship between Δ13C and Wi within this family; (iii) identify which leaf traits drive the diversity in W i observed in this family.

  • • Genetic variability of Δ13C and W i was largely independent from different temporal integration scales and their correlation was found to be strong (R 2 = 88% for leaf sugars) within this family.

  • • Weak correlations between measures of W i with estimators of photosynthetic capacity, suggest a minor role of the latter in the diversity of W i.

  • • However, the tight correlation between g s and Δ13C as well as W i, and the related genotypic variation in stomatal density, suggest that the genotypic diversity in W i within this pedunculate oak family might be due to differences in g s .

Résumé

  • • Une large diversité intra-spécifique et un fort contrôle génétique ont été mis en évidence pour Δ13C (discrimination isotopique du carbone) dans une famille de chêne pédonculé (Quercus robur L.). Δ13C est un estimateur de l’efficience intrinsèque d’utilisation de l’eau (Wi), un caractère complexe défini comme le rapport entre l’assimilation nette de CO2 (A) et la conductance stomatique pour la vapeur d’eau (g s ).

  • • Douze génotypes présentant des valeurs phénotypiques extrêmes de Δ13C ont été sélectionnés dans cette famille pour (i) évaluer la stabilité des différences génotypiques dans des environnements contrastés et pour différents estimateurs de l’efficience d’utilisation de l’eau ; (ii) quantifier la relation entre Δ13C et W i dans cette famille ; (iii) identifier quels caractères foliaires sont impliqués dans la diversité de W i observée dans cette famille.

  • • La variabilité génétique de Δ13C et W i était largement indépendante des différentes échelles d’intégration temporelles et leur corrélation était forte dans cette famille (R 2 = 88 % lorsque Δ13C était mesuré dans les sucres foliaires).

  • • Les faibles corrélations entre W i (ou Δ13C) et des estimateurs de la capacité photosynthétique suggèrent un rôle mineur de celle-ci dans la diversité de W i.

  • • Par contre, la corrélation étroite entre g s et Δ13C ainsi que W i et la variation génétique de la densité stomatique, suggèrent que la diversité génétique de W i dans cette famille de chêne pédonculé est liée à des différences de conductance stomatique g s .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Δ13C:

13C isotope discrimination (‰)

Δ13Csu :

Δ13C of extracted leaf sugars

Δ13Cst :

Δ13C of extracted leaf starch

Δ13Cb :

Δ13C of bulk leaf material

δ13C:

carbon isotope composition (‰)

δ13Cair :

δ13C of atmospheric CO2 in the greenhouse

ci :

CO2 mole fraction in intercellular air spaces (μmol mol−1)

ca :

atmospheric CO2 mole fraction (μmol mol−1)

Wi :

intrinsic water use efficiency (μmol mol−1)

A:

net CO2 assimilation rate (μmol m−2 s−1)

Asat :

light saturated A at ambient CO2concentration

gs :

stomatal conductance for water vapour (mol m−2 s−1)

Vcmax :

apparent maximum carboxylation rate of Rubisco (μmol m−2 s−1)

Nmass :

nitrogen content on a mass basis (mg g−1)

Narea :

nitrogen content on an area basis (g m−2)

Chl:

chlorophyll content (g m−2)

SD:

stomatal density (mm−2)

SL:

stomatal length (μm)

SA:

stomatal area (μm2)

SAI:

stomatal area index (mm−1)

LMA:

leaf mass-to-area ratio (g m−2)

TLT:

total leaf thickness (μm)

UET:

upper epidermis thickness (μm)

LET:

lower epidermis thickness (μm)

PMT:

palisade mesophyll thickness (μm)

SMT:

spongy mesophyll thickness (μm)

References

  • Aasamaa K., Sõber A., and Rahi M., 2001. Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Aust. J. Plant Physiol. 28: 765–774.

    Google Scholar 

  • Barnes J.D., Balaguer L., Manrique E., Elvira S., and Davison A.W., 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ. Exp. Bot. 32: 85–100.

    Article  CAS  Google Scholar 

  • Bergmann D., 2006. Stomatal development: from neighborly to global communication. Curr. Opin. Plant Biol. 9: 478–483.

    Article  PubMed  CAS  Google Scholar 

  • Bergmann D.C. and Sack F.D., 2007. Stomatal Development. Ann. Rev. Plant Biol. 58: 163–181.

    Article  CAS  Google Scholar 

  • Brendel O., Le Thiec D., Saintagne C., Kremer A., and Guehl J.M., 2008. Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L. Tree Genet. Genomes 4: 263–278.

    Google Scholar 

  • Brugnoli E., Hubick K.T., von Caemmerer S., Wong S.C., and Farquhar G.D., 1988. Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide. Plant Physiol. 88: 1418–1424.

    Article  PubMed  CAS  Google Scholar 

  • Brugnoli E. and Farquhar G.D., 2000. Photosynthetic fractionation of carbon isotopes. In: Leegood R.C., Sharkey T.D., von Caemmerer S., (Eds.) Photosynthesis: Physiology and Metabolism, Kluwer Academic Publishers, pp. 399–434.

  • Bruschi P., Grossoni P., and Bussoti F., 2003. Withinand among-tree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees 17: 164–172.

    Google Scholar 

  • Collaku A. and Harrison S.A., 2005. Heritability of waterlogging tolerance in wheat. Crop. Sci. 45: 722–727.

    Article  Google Scholar 

  • Craig H., 1957. Isotopic standards for carbon and oxygen and correction factors for massspectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12: 133–149.

    Article  CAS  Google Scholar 

  • Cregg B.M., Olivas-Garcia J.M., and Hennessey T.C., 2000. Provenance variation in carbon isotope discrimination of mature ponderosa pine trees at two locations in the Great Plains. Can. J. For. Res. 30: 428–439.

    Article  Google Scholar 

  • Dickson R.E. and Larson P.R., 1975. Incorporation of 14C-photosynthate into major chemical fractions of source and sink leaves of cottonwood. Plant Physiol. 56: 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Dillen S., Marron N., Koch B., and Ceulemans R., 2008. Genetic variation of stomatal traits and carbon isotope discrimination in two hybrid poplar families (Populus deltoides “s9-2” × P. nigra “ghoy” and P. deltoides “s9-2” × P. trichocarpa “v24”. Ann. Bot. 102: 399–407.

    Article  PubMed  Google Scholar 

  • Dreyer E., Le Roux X., Montpied P., Daudet F.A., Masson F., 2001. Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiol. 21: 223–232.

    PubMed  CAS  Google Scholar 

  • Evans J.R., 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9–19.

    Article  Google Scholar 

  • Farquhar G.D. and Richards R.A., 1984. Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes. Aust. J. Plant Physiol. 11: 539–552.

    Article  CAS  Google Scholar 

  • Farquhar G.D., Ehleringer J.R., and Hubick K.T., 1989. Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537.

    Article  CAS  Google Scholar 

  • Field C. and Mooney H.A., 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givnish T.J., (Ed.) On the Economy of Plant Form and Function, Cambridge University Press, Cambridge, pp. 25–55.

    Google Scholar 

  • Frak E., Le Roux X., Millard P., Dreyer E., Jaouen G., Saint-Joanis B., and Wendler R., 2001. Changes in total leaf nitrogen and partitioning of leaf nitrogen drive photosynthetic acclimation to light in fully developed walnut leaves. Plant Cell Environ. 24: 1279–1288.

    Article  CAS  Google Scholar 

  • Franks P. and Farquhar G., 2007. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol. 143: 78–87.

    Article  PubMed  CAS  Google Scholar 

  • Guehl J.M., Picon C., Aussenac G., and Gross P., 1994. Interactive effects of elevated CO2 and soil drought on growth and transpiration efficiency and its determinants in two European forest tree species. Tree Physiol. 14: 707–724.

    PubMed  Google Scholar 

  • Hervé D., Fabre F., Berrios E.F., Leroux N., Alchaarani G., Planchon C., Sarrafi A., and Gentzbittel L., 2001. QTL analysis of photosynthesis and water use status traits in sunflower (Helianthus annuus L.) under greenhouse conditions. J. Exp. Bot. 52: 1857–1864.

    Article  PubMed  Google Scholar 

  • Hetherington A.M. and Woodward F.I., 2003. The role of stomata in sensing and driving environmental change. Nature. 424: 901–908.

    Article  PubMed  CAS  Google Scholar 

  • Johnsen K.H. and Major J.E., 1995. Gas exchange of 20-year-old black spruce families displaying a genotype × environment interaction in growth rate. Can. J. For. Res. 25: 430–439.

    Article  Google Scholar 

  • Johnsen K.H., Flanagan L.B., Huber D.A., and Major J.E., 1999. Genetic variation in growth, carbon isotope discrimination, and foliar N concentration in Picea mariana: analyses from a half-diallel mating design using field-grown trees. Can. J. For. Res. 29: 1727–1735.

    Article  Google Scholar 

  • Kabanova, S.N., Kabashnikova, L.F., and Chaika, M.T., 2000. Specifity of genetic determination of content of photosynthetic pigments in Triticale. Biol. Plant. 43: 529–535.

    Article  CAS  Google Scholar 

  • Kundu S.K. and Tigerstedt P.M.A., 1999. Variation in net photosynthesis, stomatal characteristics, leaf area and whole-plant phytomass production among ten provenances of neem (Azadirachta indica). Tree Physiol. 19: 47–52.

    PubMed  Google Scholar 

  • Lauteri M., Scartazza A., Guido M.C., and Brugnoli E., 1997. Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Funct. Ecol. 11: 675–683.

    Article  Google Scholar 

  • Major J.E. and Johnsen K.H., 1996. Family variation in photosynthesis of 22-year-old black spruce: A test of two models of physiological response to water stress. Can. J. For. Res. 26: 1922–1933.

    Article  Google Scholar 

  • Marino B.D. and McElroy M.B., 1991. Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose. Nature 349: 127–131.

    Article  CAS  Google Scholar 

  • Masle J., Gilmore S.R., and Farquhar G.D., 2005. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436: 866–870.

    Article  PubMed  CAS  Google Scholar 

  • Monclus R., Dreyer E., Villar M., Delmotte F.M., Delay D., Petit J.M., Barbaroux C., Le Thiec D., Bréchet C., and Brignolas F., 2006. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides × Populus nigra. New Phytol. 169: 765–777.

    Article  PubMed  Google Scholar 

  • Niinemets Ü., 1999. Research review. Components of leaf dry mass per area — thickness and density — alter leaf photosynthetic capacity in reverse direction in woody plants. New Phytol. 144: 35–47.

    Article  Google Scholar 

  • Nobel P.S., 1999. Resistances and conductances — Transpiration. In: Physicochemical and environmental plant physiology. 2nd ed. Academic Press, San Diego, 635: pp. 301–303.

    Google Scholar 

  • Parelle J., Zapater M., Scotti-Saintagne C., Kremer A., Jolivet Y., Dreyer E., and Brendel O., 2007. Quantitative Trait Loci of tolerance to water-logging in a European oak (Quercus robur L.): physiological relevance and temporal effect patterns. Plant Cell Environ. 30: 422–434.

    Article  PubMed  Google Scholar 

  • Pearce D.W., Millard S., Bray D.F., and Rood S.B., 2006. Stomatal characteristics of riparian poplar species in a semi-arid environment. Tree Physiol. 26: 211–218.

    Article  PubMed  Google Scholar 

  • Picon C., Guehl J.M., and Aussenac G., 1996. Growth dynamics, transpiration and water use efficiency in Quercus robur plants submitted to elevated CO2 and drought. Ann. Sci. For. 53: 431–446.

    Article  Google Scholar 

  • Pinheiro J., Bates D., DebRoy S., and Sarkar D., 2007. nlme: linear and nonlinear mixed effects models. R package version 3.1-81.

  • Ponton S., Dupouey J.L., Breda N., and Dreyer E., 2001. Carbon isotope discrimination and wood anatomy variations in mixed stands of Quercus robur and Quercus petraea. Plant Cell Environ. 24: 861–868.

    Article  Google Scholar 

  • Ponton S., Dupouey J.L., Breda N., and Dreyer E., 2002. Comparison of water use efficiency of seedlings from two sympatric oak species: genotype × environment interactions. Tree Physiol. 22: 413–422.

    PubMed  Google Scholar 

  • R Development Core Team, 2007. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

    Google Scholar 

  • Reich P.B., Ellsworth D.S., and Walters M.B., 1998. Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups. Funct. Ecol. 12: 948–958.

    Article  Google Scholar 

  • Scotti-Saintagne C., Bodenes C., Barreneche T., Bertocchi E., Plomion C., and Kremer A., 2004. Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L. Theor. Appl. Genet. 109: 1648–1659.

    Article  PubMed  CAS  Google Scholar 

  • Scotti-Saintagne C., Bertocchi E., Barreneche T., Kremer A., and Plomion C., 2005. Quantitative trait loci mapping for vegetative propagation in pedunculate oak. Ann. For. Sci. 62: 369–374.

    Article  CAS  Google Scholar 

  • Sokal R.R. and Rohlf F.J., 2000. In: Biometry, 3rd ed. W.H. Freeman and Company, New York, 887 p.

    Google Scholar 

  • Takashima T., Hikosaka K., and Hirose T., 2004. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ. 27: 1047–1054.

    Article  CAS  Google Scholar 

  • Von Caemmerer S. and Farquhar G.D., 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387.

    Article  Google Scholar 

  • Webb A. and Baker A., 2002. Stomatal biology: new techniques, new challenges. New Phytol. 153: 365–369.

    Article  CAS  Google Scholar 

  • Xu Z.H., Saffigna P.G., Farquhar G.D., Simpson J.A., Haines R.J., Walker S., Osborne D.O., and Guinto D., 2000. Carbon isotope discrimination and oxygen isotope composition in clones of the F1 hybrid between slash pine and Caribbean pine in relation to tree growth, water use efficiency and foliar nutrient concentration. Tree Physiol. 20: 1209–1217.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Brendel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roussel, M., Le Thiec, D., Montpied, P. et al. Diversity of water use efficiency among Quercus robur genotypes: contribution of related leaf traits. Ann. For. Sci. 66, 408 (2009). https://doi.org/10.1051/forest/2009010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009010

Keywords

Mots-clés

Navigation