Skip to main content
Log in

Using cover measurements to estimate aboveground understorey biomass in Maritime pine stands

Estimation de la biomasse aérienne du sous-bois de peuplements de pin maritime à l’aide de mesures de recouvrement

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

  • • Understorey plays a major role in forest fluxes and stocks balances, however this compartment is generally poorly quantified. Our objectives were to establish models to estimate understorey biomass using vegetation cover measurements and to investigate upscaling methodologies from stand to regional level.

  • • Understorey aboveground biomass measurements were undertaken in Maritime pine stands of mesohygric, mesic and dry moorlands in South West France.

  • • Average biomass stock in this compartment was estimated to 3.50 t DM ha−1. The more abundant species groups varied with moorland types, with a higher relative contribution of herbaceous species (23.3%), bracken (59.2%) and mosses (31.6%) for mesohygric, mesic and dry moorlands, respectively. For each species group, we established significant relationships to estimate biomass using a volumetric index, based on cover and height measurements. No relationship between stand characteristics and understorey biomass was founded. We investigated the upscaling of these estimations to a several thousands hectare area using understorey cover measurements done along a regular spatial grid. The only significant correlation linked one satellite vegetation index to understorey biomass.

  • • We successfully developed empirical relationships to estimate the understorey biomass at the stand level. Further investigations could focus on the analysis of understorey variability over a finer space grid and the potential use of satellite vegetation indexes.

Résumé

  • • Le sous-bois est un compartiment non négligeable dans les études de stocks et de flux des forêts; cependant il est encore mal quantifié. Les objectifs de notre étude étaient d’établir des relations permettant d’estimer la biomasse du sous-bois de peuplements et d’analyser les possibilités d’extrapolation à l’échelle du massif.

  • • Des mesures de biomasse aérienne de sous-bois ont été réalisées sur une série de peuplements de pin maritime en Landes mésohygrophile, mésophile et sèche dans le Sud-Ouest de la France.

  • • Nous avons estimé le stock moyen de biomasse dans ce compartiment à 3.50 t MS ha−1. Le groupe d’espèces le plus abondant diffère selon le type de landes : herbacées (23.3 %), fougères (59.2 %) et mousses (31.6 %) en landes mésohygrophile, mésophile et sèche, respectivement. Pour chaque groupe d’espèces, des relations significatives ont été mises en évidence entre un indice volumique et la biomasse de sous-bois. Aucune relation n’a été mise en évidence entre les caractéristiques du peuplement et la biomasse du sous-bois. Nous avons envisagé le calcul à l’échelle d’une zone atelier de plusieurs milliers d’hectares en utilisant une grille spatialisée de relevés de recouvrements. Seul un indice satellite de végétation a présenté une corrélation positive avec la biomasse du sous-bois.

  • • Les relations que nous avons développées permettent d’estimer la biomasse du sous-bois à l’échelle du peuplement. L’analyse spatiale à une échelle plus fine et l’utilisation d’un indice de végétation pourraient être des pistes à explorer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaback P.B., 1986. Biomass regression equations for understory plants in Coastal Alaska: effects of species and sampling design on estimates. Northwest Sci. 60: 90–103.

    Google Scholar 

  • Andariese S.W. and Covington W.W., 1986. Biomass estimation for four common grass species in Northen Arizona Ponderosa pine. J. Rangeland Manage. 39: 472–473.

    Article  Google Scholar 

  • Armand D., Etienne M., Legrand C., Marechal J., and Valette J.C., 1993. Phytovolume, phytomasse et relations structurales chez quelques arbustes méditerranéens. Ann. Sci. For. 50: 79–89.

    Article  Google Scholar 

  • Aubinet M., Grelle A., Ibrom A., Rannik U., Moncrieff J., Foken T., Kowalski A.S., Martin P.H., Berbigier P., Bernhofer C., Clement R., Elbers J., Granier A., Grunwald T., Morgenstern K., Pilegaard K., Rebmann C., Snijders W., Valentini R., and Vesala T., 2000. Estimates of the annual net carbon and water exchange of forests: the Euroflux methodology. Adv. Ecol. Res. 30: 113–175.

    Article  CAS  Google Scholar 

  • Augusto L., Badeau V., Arrouays D., Trichet P., Flot J.L., Jolivet C., and Merzeau D., 2006. Caractéristiques physicochimiques des sols à l’échelle d’une région naturelle à partir d’une compilation de données. Exemple des sols du massif forestier landais. Etude et gestion des sols 13: 7–22.

    Google Scholar 

  • Augusto L., Crampon N., Saur E., Bakker M.R., Pellerin S., Lavaissière de C., and Trichet P., 2005. High rates of nitrogen fixation of Ulex species in the understory of maritime pine stands and the potential effect of phosphorus fertilization. Can. J. For. Res. 35: 1183–1192.

    Article  CAS  Google Scholar 

  • Bakker M.R., Augusto L., and Achat D.L., 2006. Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid site. Plant soil 286: 37–51.

    Article  CAS  Google Scholar 

  • Bergeret H., 1980. Évolution floristique et poductivité de Landes à molinie (Molinia coerulea M.) en forêt landaise, Doctorat, Université de Bordeaux III, France, 154 p.

    Google Scholar 

  • Binkley D. and Graham R.L., 1981. Biomass, production, and nutrient cycling of mosses in an old-growth Douglas-fir forest. Ecology 62: 1387–1389.

    Article  Google Scholar 

  • Byrne S.V. and Wentworth T.R., 1988. Relationship between volume and biomass of early successional vegetation and the prediction of Loblolly pine seedling growth. For. Sci. 34: 939–947.

    Google Scholar 

  • Chessel D., Dufour A.-B., and Thioulouse J., 2004. The ade4 package-I-One-table methods. R News 4: 5–10.

    Google Scholar 

  • Clary W.P. and Tiedemann A.R., 1986. Distribution of biomass within small tree and shrub form Quercus gambelii stands. For. Sci. 32: 234–242.

    Google Scholar 

  • Dawson T.P., North P.R.J., Plummer S.E., and Curran P.J., 2003. Forest ecosystem chlorophyll content: implications for remotely sensed estimates of net primary productivity. Int. J. Rem. Sens. 24: 611–617.

    Article  Google Scholar 

  • Delzon S., 2000. Photosynthèse de la molinie (Molinia caerulea (L.) Moench) en sous-bois de pin maritime, aux niveaux de la feuille et du couvert, DEA (MSc), Université d’Orsay, Paris XI, 35 p.

    Google Scholar 

  • Delzon S., Bosc A., Cantet L., and Loustau D., 2005. Variation of the photosynthetic capacity across a chronosequence of maritime pine correlates with needle phosphorus concentration. Ann. For. Sci. 62: 537–543.

    Article  CAS  Google Scholar 

  • Delzon S., Bosc A., Porté A., Burlett R., Bernier F., Lambrot C., Trichet P., Sartore M., Berbigier P., Bonnefond J.-M., Medlyn B.E., and Loustau D., 2003. Closing the carbon balance of a mature pine forest. In: CarboEurope Project Meetings and CarboEurope Conference, “The continental carbon cycle”, Lisbon, Portugal.

  • Delzon S. and Loustau D., 2005. Age-related decline in stand water use: sap flow and transpiration in a pine forest chronosequence. Agric. For. Meteorol. 129: 119.

    Article  Google Scholar 

  • Demounem R. and Legigan P., 1988. Les Landes et l’homme. Évolution naturelle et évolution dirigée des landes de Gascogne, Centre d’animation du Graoux (Ed.), Belin-Beliet, France, 144 p.

  • Den Ouden J., 2000. The role of bracken (Pteridium aquilinum) in forest dynamics, Ph. D. thesis, Landbouw universiteit Wageningen (Wageningen Agricultural University), Wageningen, The Netherlands, 221 p.

    Google Scholar 

  • Den Ouden J. and Alaback P.B., 1996. Successional trends in biomass of mosses on windthrow mounds in the temperate rainforests of Southeast Alaska. Vegetatio 124: 115–128.

    Google Scholar 

  • Duchemin B., Guyon D., and Lagouarde J.-P., 1999. Potential and limits of NOAA-AVHRR temporal composite data for phenology and water stress monitoring of temperate forest ecosystems. Int. J. Rem. Sens. 20: 895–917.

    Article  Google Scholar 

  • Dupouey J.-L., Pignard G., Badeau V., Thimonier A., Dhote J.F., Nepveu G., Berges L., Augusto L., Belkacem S., and Nys C., 2000. Stocks et flux de carbone dans les forêts françaises. Rev. For. Fr. LII: 139–154.

    Google Scholar 

  • Etienne M., Legrand C., and Armand D., 1991. Stratégies d’occupation de l’espace par les petits ligneux après débroussaillement en région méditerranéenne française. Exemple d’un réseau de pare-feu dans l’Esterel. Ann. Sci. For. 48: 667–677.

    Article  Google Scholar 

  • Fernandes P., Loureiro C., Botelho H., Ferreira A., and Fernandes M., 2002. Avaliacao indirecta da carga de combustivel em pinhal bravo. Silva Lusitana 10: 73–90.

    Google Scholar 

  • Ford E.D. and Newbould P.J., 1977. The biomass and production of ground vegetation and its relation to tree cover through a deciduous woodland cycle. J. Ecol. 65: 201–212.

    Article  Google Scholar 

  • Guinaudeau J., 1964. La forêt landaise, INRA Station de Recherches Forestières, Bordeaux, France, 39 p.

    Google Scholar 

  • IFN, 2006. Les résultats publics, Inventaire Forestier National, http:// www.ifn.fr/spip/rubrique.php3?id_rubrique=17&script=resultat. php&web=06&offset=2#tab, 2th Oct. 2006.

  • IFN, 2007. Opérations d’inventaire, Inventaire Forestier National, http:// www.ifn.fr/spip/rubrique.php3?id_rubrique=124, 1st Sept. 2007.

  • Improved Pan-European indicators for sustainable forest management, 2003. Ministerial conference on the protection of forests in Europe, Vienna, Austria, 7–8 October 2002.

  • Kazanis D., Xanthopoulos G., and Arianoutsou M., 2006. Long-term post-fire evolution of understorey biomass in Pinus halepensis Mill. forests in Central Greece. In: Vth International Conference on Forest Fire Research, pp. 1-13.

  • Kubicek F. and Jurko A., 1975. Estimation of the above-ground biomass of the herb layer in forest communities. Folia Geobot. Phytotox. 10: 113–129.

    Google Scholar 

  • Lakida P., Nilsson S., and Svidenko A., 1996. Estimation of forest phytomass for selected countries of the former european USSR. Biomass Bioenergy 11: 371–382.

    Article  Google Scholar 

  • Law B.E., Van Tuyl S., Cescatti A., and Baldocchi D.D., 2001. Estimation of leaf area index in open-canopy ponderosa pine forests at different successional stages and management regimes in Oregon. Agric. For. Meteorol. 108: 1–14.

    Article  Google Scholar 

  • Lemoine B., Bonhomme D., Chinzi D., Comps B., Bergeret H., Gelpe J., Juste C., and Menet M., 1983. Élevage en forêt dans les Landes de Gascogne. I. — Le système végétal. Ann. Sci. For. 40: 3–40.

    Article  Google Scholar 

  • Lin K.C., Wang C.P., Huang C.M., Horng F.W., and Chiu C.M., 2003. Estimates of biomass and carbon storage in two Taiwania plantations of the Liukuei experimental forest. Taiwan J. For. Res. 18: 85–94.

    Google Scholar 

  • Maarel E.v.d., 2005. Vegetation ecology — an overview. In: Maarel E.v.d. (Ed.), Blackwell Science Ltd., Victoria, Australia, pp. 2–51.

    Google Scholar 

  • Magnani F., Mencuccini M., Borghetti M., Berbigier P., Berninger F., Delzon S., Grelle A., Hari P., Jarvis P.G., Kolari P., Kowalski A.S., Lankreijer H., Law B.E., Lindroth A., Loustau D., Manca G., Moncrieff J.B., Rayment M., Tedeschi V., Valentini R., and Grace J., 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447: 848–852.

    Article  PubMed  Google Scholar 

  • Martin J.L., Gower S.T., Plaut J., and Holmes B., 2005. Carbon pools in a boreal mixedwood logging chronosequence. Global Change Biol. 11: 1883–1894.

    Google Scholar 

  • McDonald P.M., Abbott C.S., and Fiddler G.O., 2003. Density and development of Bracken Fern (Pteridium aquilinum) in forest plantations as affected by manual and chemical application. Native Plants J. 4: 53–60.

    Google Scholar 

  • Muukkonen P., Makipaa R., Laiho R., Minkkinen K., Vasander H., and Finer L., 2006. Relationship between biomass and percentage cover in understorey vegetation of boreal coniferous forests. Silva Fenn. 40: 231–245.

    Google Scholar 

  • Paton D., Nunez J., Bao D., and Munoz A., 2002. Forage biomass of 22 shrub species from Monfrague Natural Park (SW Spain) assessed by log-log regression models. J. Arid Environ. 52: 223–231.

    Article  Google Scholar 

  • Pieper R.D., 1990. Overstory-understory relations in pynion-juniper woodlands in New Mexico. J. Rangeland Manage. 43: 413–415.

    Article  Google Scholar 

  • Poissonnet M., Orazio C., and Carnus J.M., 2007. Projet FORSEE Un réseau de zones pilotes pour la gestion durable des forêts de l’Arc Atlantique — Partie 2: Matériel et Méthodes, Rapport final Aquitaine, European Union and FEDER — INTERREG IIIB Atlantic Area Project FORSEE, Institut Européen de la Forêt Cultivée (www.iefc. net), Cestas, France.

    Google Scholar 

  • Popiolek Z., 1978. Ocena stanu biomasy runa i mchow wybranych zbiorowisk lesnych w nadlesnictwie Janow Lubelski (Evaluation of the biomass of the herb layer and mosses of selected forest communities in the Janow Lubelski forest district, Poland). Annales Universitatis Mariae Curie-Sklodowska C33: 237–252.

    Google Scholar 

  • Porté A., Bosc A., Champion I., and Loustau D., 2000. Estimating the foliage area of Maritime pine (Pinus pinaster Aït.) branches and crowns with application to modelling the foliage area distribution in the crown. Ann. For. Sci. 57: 73–86.

    Article  Google Scholar 

  • Pyke D.A. and Zamora B.A., 1982. Relationships between overstory structure and understory production in the Grand Fir/Myrtle Boxwood habitat type of Northcentral Idaho. J. Rangeland Manage. 35: 769–773.

    Article  Google Scholar 

  • R Development Core Team, 2007. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org, 9th Sept. 2007.

    Google Scholar 

  • Rameau J.C., Mansion D., Dumé G., Timbal J., Lecointe A., Dupont P., and Keller R., 1989. Flore forestière française. Guide écologique illustré, Institut pour le Développement Forestier, Paris, France, 1785 p.

    Google Scholar 

  • Saint-Didier J., 1977a. Milieu et végétation de la grande Lande de Gascogne, DEA Analyse et aménagement de l’espace, Université de Bordeaux III, France, 38 p.

    Google Scholar 

  • Saint-Didier J., 1977b. Phytogéographie et typologie des Landes atlantiques européennes, DEA Analyse et aménagement de l’espace, Université de Bordeaux III, France, 45 p.

    Google Scholar 

  • Sebei H., Albouchi A., Rapp M., and El-Aouni M.H., 2001. Évaluation de la biomasse arborée et arbustive dans une séquence de dégradation de la suberaie à Cytise de Kroumirie (Tunisie). Ann. For. Sci. 58: 175–191.

    Article  Google Scholar 

  • Smith W.B. and Brand G.J., 1983. Allometric biomass equations for 98 species of herbs, shrubs, and small trees, Research Note NC-299, USDA, Forest Service, North Central Experiment Station, 8 p.

  • Telfer E.S., 1972. Understory biomass in five forest types in southwestern Nova Scotia. Can. J. Bot. 50: 1263–1267.

    Article  Google Scholar 

  • Ter Mikaelian M. and Korzukhin M.D., 1997. Biomass equations for sixty-five North American tree species. For. Ecol. Manage: 97: 1–24.

    Article  Google Scholar 

  • Timbal J. and Caze G., 2003. Inventaire des habitats forestiers du site pilote du bassin versant de Canteloup, http://www.pierroton.inra.fr/ IEFC/activites/FORSEE/rapports/FORSEE_Aquitaine.C4.flore.pdf, 14th Oct. 2005.

  • Tremblay N.O. and Larocque G.R., 2001. Seasonal dynamics of understory vegetation in four eastern Canadian forest types. Int. J. Plant Sci. 162: 271–286.

    Article  Google Scholar 

  • Yarie J. and Mead B.R., 1988. Twig and foliar biomass estimation equations for major plant species in the Tanana river basin of interior Alaska, Research-Paper PNW-RP-401, USDA, Forest Service, Pacific Northwest Research Station, 20 p.

  • Zianis D. and Mencuccini M., 2003. On simplifying allometric analyses of forest biomass. For. Ecol. Manage. 187: 311–332.

    Article  Google Scholar 

  • Zianis D., Muukkonen P., Makipaa R., and Mencuccini M., 2006. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4: 1–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annabel J. Porté.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porté, A.J., Samalens, JC., Dulhoste, R. et al. Using cover measurements to estimate aboveground understorey biomass in Maritime pine stands. Ann. For. Sci. 66, 307 (2009). https://doi.org/10.1051/forest/2009005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009005

Keywords

Mots-clés

Navigation