Skip to main content
Log in

Effect of cream pasteurization, microfiltration and enzymatic proteolysis on in vitro cholesterol-lowering activity of buttermilk solids

Effet de la pasteurisation de la crème, du fractionnement par microfiltration et de la protéolyse enzymatique sur l’activité hypocholestérolémiante in vitro des solides du babeurre

  • Original Article
  • Published:
Dairy Science & Technology

Abstract

The lipids and proteins of buttermilk solids have been associated with several potential health benefits. In this work, the effect of cream pasteurization, microfiltration (MF) and enzymatic proteolysis on the chemical composition and cholesterol-lowering activity of buttermilk solids was studied. Buttermilk was made from pasteurized or unpasteurized cream and fractionated using a 0.5-μm MF membrane or treated with pepsin or pepsin followed by trypsin. The cholesterol-lowering activity of the products obtained was measured as micellar solubility of cholesterol in vitro. This value was reduced significantly by 57.1% of the control in the presence of raw-cream buttermilk, while buttermilk from pasteurized cream had a much lower impact (reduction of 17.0%). These results suggest a strong inhibitory effect of components in raw-cream buttermilk on in vitro micellar solubility of cholesterol. MF retentate and permeate of buttermilks made from either cream had smaller effects on micellar solubility. Enzymatic hydrolysis of buttermilk made from pasteurized cream seemed to restore the lost cholesterol-lowering activity.

Abstract

(MF) 0.5 57.1% (17.0%) MF

Résumé

Les lipides et protéines du babeurre sont associés à différentes activités biologiques bénéfiques pour la santé. Le but de cette étude était de mesurer l’effet de la pasteurisation de la crème, de la microfiltration (MF) et de la protéolyse enzymatique sur la composition chimique et l’activité anti-cholestérol des solides du babeurre. Des babeurres issus de crèmes crues ou pasteurisées ont été fractionnés à l’aide d’une membrane de 0,5 μm ou hydrolysés à l’aide de pepsine ou de pepsine suivie de trypsine. L’activité hypocholestérolémiante des produits ainsi obtenus a été mesurée en termes de solubilité micellaire du cholestérol in vitro. Une réduction de 57,1 % par rapport au témoin a été obtenue en présence du babeurre issu de crèmes crues, tandis que l’impact du babeurre issu de crèmes pasteurisées était plus faible (réduction de 17,0 %). Ces résultats suggèrent la présence, dans le babeurre issu de crèmes crues, de composants inhibant fortement la solubilité micellaire du cholestérol in vitro. Les rétentats et perméats des babeurres issus des crèmes crues ou pasteurisées ont eu des effets moins importants sur la solubilité micellaire du cholestérol. L’hydrolyse enzymatique du babeurre issu de crèmes pasteurisées a permis de rétablir, au moins en partie, l’activité hypocholestérolémiante perdue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astaire J.C., Ward R., German J.B., Jiménez-Flores R., Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction, J. Dairy Sci. 86 (2003) 2297–2307.

    Article  CAS  Google Scholar 

  2. Corredig M., Dalgleish D.G., Effect of heating of cream on the properties of milk fat globule membrane isolates, J. Agric. Food Chem. 46 (1998) 2533–2540.

    Article  CAS  Google Scholar 

  3. Corredig M., Dalgleish D.G., The mechanisms of the heat-induced interaction of whey proteins with casein micelles in milk, Int. Dairy J. 9 (1999) 233–236.

    Article  Google Scholar 

  4. Dewettinck K., Rombaut R., Thienpont N., Le T.T., Messens K., Camp J.V., Nutritional and technological aspects of milk fat globule membrane material, Int. Dairy J. 18 (2008) 436–457.

    Article  CAS  Google Scholar 

  5. Donato L., Guyomarc’h F., Formation and properties of the whey protein/κ-casein complexes in heated skim milk — A review, Dairy Sci. Technol. 89 (2009) 3–29.

    Article  CAS  Google Scholar 

  6. Eckhardt E.R.M., Wang D.Q.-H., Donovan J.M., Carey M.C., Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers, Gastroenterology 122 (2002) 948–956.

    Article  CAS  Google Scholar 

  7. Evers J.M., The milk fat globule membrane — compositional and structural changes post secretion by the mammary secretory cell, Int. Dairy J. 14 (2004) 661–674.

    Article  CAS  Google Scholar 

  8. Gassi J.-Y., Famelart M.-H., Lopez C., Heat treatment of cream affects the physicochemical properties of sweet buttermilk, Dairy Sci. Technol. 88 (2008) 369–385.

    Article  CAS  Google Scholar 

  9. IDF, Milk and Milk Products — Determination of Nitrogen Content-Routine Method Using Combustion According to the Dumas Principle, Standard 185, Int. Dairy Fed., Brussels, Belgium, 2002.

    Google Scholar 

  10. IDF, Skim Milk, Whey and Buttermilk — Determination of Fat Content-Gravimetric Method (Reference Method), Standard 22, Int. Dairy Fed., Brussels, Belgium, 2008.

    Google Scholar 

  11. Ikeda I., Tanaka K., Vahouny G.V., Gallo L.L., Inhibition of cholesterol absorption in rats by plant sterols, J. Lipid Res. 29 (1988) 1573–1582.

    CAS  Google Scholar 

  12. Kobayashi T., Shimizugawa T., Osakabe T., Watanabe S., Okuyama H., A long-term feeding of sphingolipids affected the levels of plasma cholesterol and hepatic triacylglycerol but not tissue phospholipids and sphingolipids, Nutr. Res. 17 (1997) 111–114.

    Article  CAS  Google Scholar 

  13. Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 680–685.

    Article  CAS  Google Scholar 

  14. Mather I.H., A review and proposed nomenclature for major proteins of milk-fat globule membrane, J. Dairy Sci. 83 (2000) 203–247.

    Article  CAS  Google Scholar 

  15. McPherson A.V., Kitchen B.J., Reviews of the progress of dairy science: the bovine milk fat globule membrane — its formation, composition, structure and behaviour in milk and dairy products, J. Dairy Res. 50 (1983) 107–133.

    Article  CAS  Google Scholar 

  16. Minekus M., Marteau P., Havenaar R., Huis In’t Veld J.H.J., A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine, Altern. Lab. Anim. 23 (1995) 197–209.

    Google Scholar 

  17. Morin P., Jiménez-Flores R., Pouliot Y., Effect of temperature and pore size on fractionation of fresh and reconstituted buttermilk by microfiltration, J. Dairy Sci. 87 (2004) 267–273.

    Article  CAS  Google Scholar 

  18. Morin P., Jiménez-Flores R., Pouliot Y., Effect of processing on the composition and microstructure of buttermilk and its milk fat globule membranes, Int. Dairy J. 17 (2007) 1179–1187.

    Article  CAS  Google Scholar 

  19. Nagaoka S., Futamura Y., Miwa K., Awano T., Yamauchi K., Kanamaru Y., Tadashi K., Kuwata T., Identification of novel hypocholesterolemic peptides derived from bovine milk beta-lactoglobulin, Biochem. Biophys. Res. Commun. 281 (2001) 11–17.

    Article  CAS  Google Scholar 

  20. Noh S.K., Koo S.I., Egg sphingomyelin lowers the lymphatic absorption of cholesterol and alpha-tocopherol in rats, J. Nutr. 133 (2003) 3571–3576.

    CAS  Google Scholar 

  21. Noh S.K., Koo S.I., Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats, J. Nutr. 134 (2004) 2611–2616.

    CAS  Google Scholar 

  22. Rombaut R., Camp J.V., Dewettinck K., Analysis of phospho- and sphingolipids in dairy products by a new HPLC method, J. Dairy Sci. 88 (2005) 482–488.

    Article  CAS  Google Scholar 

  23. Rombaut R., Dewettinck K., Properties, analysis and purification of milk polar lipids, Int. Dairy J. 16 (2006) 1362–1373.

    Article  CAS  Google Scholar 

  24. Singh H., The milk fat globule membrane — a biophysical system for food applications, Curr. Opin. Colloid Interface Sci. 11 (2006) 154–163.

    Article  CAS  Google Scholar 

  25. Sodini I., Morin P., Olabi A., Jiménez-Flores R., Compositional and functional properties of buttermilk: a comparison between sweet, sour, and whey buttermilk, J. Dairy Sci. 89 (2006) 525–536.

    Article  CAS  Google Scholar 

  26. Spitsberg V.L., Invited review: bovine milk fat globule membrane as a potential nutraceutical, J. Dairy Sci. 88 (2005) 2289–2294.

    Article  CAS  Google Scholar 

  27. Ward R.E., German J.B., Corredig M., Composition, applications, fractionation, technological and nutritional significance of milk fat globule membrane material, in: Fox P.F., Mcsweeney P.L.H. (Eds.), Advanced Dairy Chemistry, Volume 2: Lipids, Springer, New York, USA, 2006.

    Google Scholar 

  28. Ye A., Singh H., Taylor M.W., Anema S., Characterization of protein components of natural and heat-treated milk fat globule membrane, Int. Dairy J. 12 (2002) 393–402.

    Article  CAS  Google Scholar 

  29. Ye A., Singh H., Taylor M.W., Anema S., Interactions of whey proteins with milk fat globule membrane proteins during heat treatment of whole milk, Lait 84 (2004) 269–283.

    Article  CAS  Google Scholar 

  30. Zlatkis A., Zak B., Study of a new cholesterol reagent, Anal. Biochem. 29 (1969) 143–148.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Pouliot.

About this article

Cite this article

Conway, V., Gauthier, S.F. & Pouliot, Y. Effect of cream pasteurization, microfiltration and enzymatic proteolysis on in vitro cholesterol-lowering activity of buttermilk solids. Dairy Sci. Technol. 90, 449–460 (2010). https://doi.org/10.1051/dst/2010021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/dst/2010021

Navigation