The protective effect of processed cheese against hyperlipidemia in rats

Effet protecteur du fromage fondu contre l’hyperlipidémie chez le rat


The purpose of this study was to examine the effects of intake of processed cheeses containing different types of fats on plasma lipid profile and lipid peroxidation using hypercholesterolemic rats as an experimental model. This study included three types of processed cheeses: the first two contained vegetable oils and the third contained milk fat only. Five groups of rats (8 animals each) were fed balanced diet (normal), hypercholesterolemic diet (control), and hypercholesterolemic diet containing one of the tested processed cheeses, respectively, for 8 weeks. The body weight and the food intake were recorded and the gain in body weight and food efficiency ratio were also calculated. Blood analysis was carried out at the end of the experiment for total lipids and cholesterol, low density lipoprotein, high density lipoprotein (HDL), triglycerides, and plasma malondialdehyde. Feeding the different processed cheeses with hypercholesterolemic diet showed variable reductions in the plasma lipids, except for HDL, which was increased as compared to control. The highest and significant reduction was observed in the group that received processed cheese containing milk fat only. Also, this group showed significant reduction in lipid peroxidation. These results suggest that consumption of processed cheeses may improve the markers of cardiovascular diseases, particularly processed cheeses containing milk fat only. Further studies on human subjects are needed to verify the present results and to elucidate the possible mechanisms behind the differential effects on serum cholesterol of cheeses containing different types of fats.


(8) 8 (Tg) (MDA)


Le but de cette étude était d’examiner les effets de la consommation de fromages fondus contenant différents types de matière grasse sur le profil lipidique du plasma et la peroxydation des lipides sur le rat hypercholestérolémique comme modèle experimental. L’étude incluait trois types de fromages fondus; les deux premiers contenaient des huiles végétales et le troisième uniquement de la matière grasse laitière. Cinq groupes de rats (de 8 animaux chacun) ont bénéficié pendant 8 semaines d’un régime alimentaire équilibré (normal), hypercholestérolémique (contrôle) ou hypercholestérolémique contenant un des fromages fondus testés. Le poids et la prise alimentaire ont été relevés et le gain de poids et le ratio d’efficacité alimentaire ont été calculés. À la fin de l’expérimentation, une analyse du sang a été réalisée pour les lipides totaux et le cholestérol, LDL et HDL, les triglycérides et le malondialdéhyde du plasma. L’apport des différents fromages fondus à un régime hypercholestérolémique a montré des réductions variables des lipides du plasma, à l’exception des HDL qui augmentaient comparativement au contrôle. La réduction significative la plus élevée était observée dans le groupe qui recevait le fromage fondu contenant uniquement la matière grasse laitière. Ce groupe présentait également une réduction significative de la peroxydation des lipides. Ces résultats suggèrent que la consommation de fromages fondus peut améliorer les marqueurs de maladie cardiovasculaire, en particulier les fromages fondus contenant uniquement de la matière grasse laitière. Des études complémentaires sur des sujets humains sont nécessaires pour vérifier les présents résultats et pour élucider les mécanismes possibles sous-jacents aux différents effets sur le cholestérol sérique des fromages contenant différents types de matière grasse.

This is a preview of subscription content, access via your institution.


  1. [1]

    AOAC, Official Methods of Analysis of the Association of Official Agriculture Chemists, 12th edn., Washington DC, USA, 1995.

  2. [2]

    Bendsen N.T., Hother A.-L., Jensen S.K., Lorenzen J.K., Asturp A., Effect of dairy calcium on fecal fat excretion: a randomized crossover trial, Int. J. Obes. 32 (2008) 1816–1824.

    Article  CAS  Google Scholar 

  3. [3]

    Biong A.S., Muller H., Seljeflot I., Veierod M.B., Pederson J.I., A comparison of the effects of cheese and butter on serum lipids, haemostatic variables and homocysteine, Br. J. Nutr. 92 (2004) 791–797.

    Article  CAS  Google Scholar 

  4. [4]

    Boon N., Hul G.B.J., Stegen H.C.H., Sluijsmans W.F.M., Valle C., Langin D., Viguerie N., Saris W.H.M., An intervention study of the effect of calcium intake on faecal fat excretion, energy metabolism and adipose tissue mRNA expression of lipid metabolism related proteins, Int. J. Obes. 31 (2007) 1704–1712.

    Article  CAS  Google Scholar 

  5. [5]

    Briggs G.M., Williams M.A., A new mineral mixture for experimental rat diets and evaluation of other mineral mixtures, Fed. Proc. 22 (1963) 261–266.

    Google Scholar 

  6. [6]

    British Heart Foundation, Cut the saturated fat, 2004,

  7. [7]

    Burstein M., Scholnick H.R., Morfin R., Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions, J. Lipid Res. 11 (1970) 583–595.

    CAS  Google Scholar 

  8. [8]

    Calvo M.V., Juarez M., Fontecha J., El-Aasar M., Naguib M., Abd El-Salam M.H., Effect of milk fat replacement with vegetable oils on fatty acids composition and conjugated linoleic acid content of market Egyptian processed cheeses, Egypt. J. Dairy Sci. 35 (2007) 97–107.

    CAS  Google Scholar 

  9. [9]

    Catapano A.L., Maggi F.M., Tragni E., Low density lipoprotein oxidation, antioxidants, and atherosclerosis, Curr. Opin. Cardiol. 5 (2000) 355–363.

    Article  Google Scholar 

  10. [10]

    Colin D.F., Tillmann C., 12/15-lipoxygenase, oxidative modification of LDL and atherogenesis, Trends Cardiovasc. Med. 11 (2001) 116–124.

    Article  Google Scholar 

  11. [11]

    Egyptian Standards Organization, Processed Cheese and Spreads Containing Vegetable Oils, Standard No. 999, 2002.

  12. [12]

    Faulconnier Y., Arnal M.-A., Mirand P.P., Chardigny J.-M., Chilliard Y., Isomers of conjugated linoleic acid decrease plasma lipids and stimulate adipose tissue lipogenesis without changing adipose weight in post-prandial adult sedentary or trained Wistar rat, J. Nutr. Biochem. 15 (2004) 741–748.

    Article  CAS  Google Scholar 

  13. [13]

    Gerard T., Gerald A.L., Process and reagents for the selective separation of low density lipoprotein (LDL) and for the quantification of their components, EP 0076211, 1983.

  14. [14]

    Hegsted D.M., Ausman L.M., Johnson J.A., Dallal G.E., Dietary fat and serum lipids: an evaluation of the experimental data, Am. J. Clin. Nutr. 7 (1993) 875–883.

    Google Scholar 

  15. [15]

    Heijnen M.L., Van Amelsvoort J.M., Deurenberg P., Beynen A.C., Neither raw nor retrograded resistant starch lowers fasting serum cholesterol concentrations in healthy normolipidemic subjects, Am. J. Clin. Nutr. 64 (1996) 312–318.

    CAS  Google Scholar 

  16. [16]

    Houston D.K., Driver K.E., Bush A.J., Kritchevsky S.B., The association between cheese consumption and cardiovascular risk factors among adults, J. Hum. Nutr. Diet. 21 (2008) 129–140.

    Article  CAS  Google Scholar 

  17. [17]

    Hu F.B., Manson J.E., Willett W.C., Types of dietary fat and risk of coronary heart disease: a critical review, J. Am. Coll. Nutr. 20 (2001) 5–19.

    Google Scholar 

  18. [18]

    ISO-IDF, Milk and Milk Products — Extraction Methods for Lipids and Liposoluble Compounds, Standard No. 14156, International Dairy Federation, Brussels, Belgium, 2001.

    Google Scholar 

  19. [19]

    ISO-IDF, Milk Fat — Preparation of Fatty Acids Methyl Esters, Standard No. 15884, International Dairy Federation, Brussels, Belgium, 2002.

    Google Scholar 

  20. [20]

    Kim H.-K., Kim S.-R., Ahn J.-Y., Cho I.-J., Yoon C.-S., Ha T.-Y., Dietary conjugated linoleic acid reduces lipid peroxidation by increasing oxidative stability in rats, J. Nutr. Sci. Vitaminol. 51 (2005) 8–15.

    CAS  Google Scholar 

  21. [21]

    Lee K.N., Kritchevsky D., Pariza M.W., Conjugated linoleic acid and atherosclerosis in rabbits, Atherosclerosis 108 (1994) 19–25.

    Article  CAS  Google Scholar 

  22. [22]

    Lorenzen J.K., Nielsen S., Holst J.J., Tetens I., Rehfeld J.F., Astrup A., Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism appetite and subsequent energy intake, J. Am. Clin. Nutr. 85 (2007) 678–687.

    CAS  Google Scholar 

  23. [23]

    Martin J.C., Canlet C., Delplanque B., Agnani G., Lairon D., Gottardi G., Bencharif K., Gripois S., Thaminy A., Paris A., (1)H NMR metabonomics can differentiate the early atherogenic effect of dairy products in hyperlipidemic hamsters, Atherosclerosis (2009), doi: 10.1016/j.atherosclerosis.2009.01.040.

  24. [24]

    Megraw R., Dunn D., Biggs H., Manual and continuous flow colorimetry of triacylglycerols by a fully enzymic method, Clin. Chem. 25 (1979) 273–278.

    CAS  Google Scholar 

  25. [25]

    Morcos S.R., The effect of protein value of the diet on the neurological manifestations produced in rats by β-immodipropionitrile, Br. J. Nutr. 21 (1967) 269–274.

    Article  CAS  Google Scholar 

  26. [26]

    Mori T.A., Beilin L.J., Long chain Omega 3 fatty acids blood lipids and cardiovascular risk reduction, Curr. Opin. Lipidol. 12 (2001) 11–17.

    Article  CAS  Google Scholar 

  27. [27]

    Ness A.R., Davey-Smith G., Hart C., Milk, coronary heart disease and mortality, J. Epidemiol. Community Health 55 (2001) 379–382.

    Article  CAS  Google Scholar 

  28. [28]

    Nestel P.J., Effect of dairy fats within different foods on plasma lipids, J. Am. Coll. Nutr. 27 (2008) 735S-740S.

    Google Scholar 

  29. [29]

    Nestel P.J., Chronopulos A., Chun M., Dairy fat in cheese raises LDL cholesterol less than that in butter in mildly hypercholesterolaemic subjects, Eur. J. Clin. Nutr. 59 (2005) 1059–1063.

    Article  CAS  Google Scholar 

  30. [30]

    Nicolosi R.J., Dietary fat saturation effects on low-density-lipoprotein concentrations and metabolism in various animal models, Am. J. Clin. Nutr. 65 (Suppl.) (1997) 1617S-1627S.

    CAS  Google Scholar 

  31. [31]

    Nicolosi R.J., Rogers E.J., Kritchevsky D., Scimeca J.A., Huth P.J., Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters, Artery 22 (1997) 266–277.

    CAS  Google Scholar 

  32. [32]

    Pariza M.W., Park Y., Cook M.E., Conjugated linoleic acid and the control of cancer and obesity, Toxicol. Sci. 52 (1999) 107–110.

    CAS  Google Scholar 

  33. [33]

    Roupas P., Royle P., Descamps R., Scherer B., McIntosh G., The impact of cheese consumption on markers of cardiovascular risk in rats, Int. Dairy J. 16 (2006) 243–251.

    Article  CAS  Google Scholar 

  34. [34]

    Satoh K., Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method, Clin. Chim. Acta 90 (1978) 37–43.

    Article  CAS  Google Scholar 

  35. [35]

    Sher J., Pronczuk A., Hajri T., Hayes K., Dietary conjugated linoleic acid lowers plasma cholesterol during cholesterol supplementation, but accentuates the atherogenic lipid profile during the acute phase response in hamsters, J. Nutr. 133 (2003) 456–460.

    CAS  Google Scholar 

  36. [36]

    Sjogren P., Rosell M., Skoglund-Andersson C., Zdravkovic S., Vessby B., De Faire U., Hamsten A., Hellenius M.-L., Fisher R., Milk derived fatty acids are associated with a more favourable LDL particle size distribution in healthy men, J. Nutr. 134 (2004) 1729–1735.

    CAS  Google Scholar 

  37. [37]

    Sieber R., Oxidized cholesterol in milk and dairy products, Int. Dairy J. 15 (2005) 191–206.

    Article  CAS  Google Scholar 

  38. [38]

    Tholstrup T., Dairy products and cardiovascular disease, Curr. Opin. Lipidol. 17 (2006) 1–10.

    CAS  Google Scholar 

  39. [39]

    Toro G., Ackerman P.G., Practical Clinical Chemistry, 1st edn., Little, Brown and Company, Boston, USA, 1975.

    Google Scholar 

  40. [40]

    Valeille K., Férézou J., Parquet M., Amsler G., Gripois D., Quignard-Boulangé A., Martin J.C., The natural concentration of the conjugated linoleic acid cis-9, trans-11 in milk fat has antiatherogenic effects in hyperlipidemic hamsters, J.Nutr. 136 (2006) 1305–1310.

    CAS  Google Scholar 

  41. [41]

    Walstra P., Jenness R., Dairy Chemistry and Physics, John Wiley & Sons Inc., New York, USA, 1984.

    Google Scholar 

  42. [42]

    Watson D., A simple method for the determination of serum cholesterol, Clin. Chem. Acta 5 (1960) 637–643.

    Article  CAS  Google Scholar 

  43. [43]

    Zulet M.A., Barber A., Garcin H., Higueret A., Martinez J.A., Alterations in carbohydrate and lipid metabolism induced by a diet rich in coconut oil and cholesterol in rat model, J. Am. Coll. Nutr. 18 (1999) 36–42.

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohamed H. Abd El-Salam.

About this article

Cite this article

Abd El-Salam, M.H., Mohamed, D.A. The protective effect of processed cheese against hyperlipidemia in rats. Dairy Sci. Technol. 89, 437–447 (2009).

Download citation

  • processed cheese
  • rat
  • hyperlipidemia
  • hypercholesterolemia
  • lipid profile
  • conjugated linoleic acid
  • fromage fondu
  • rat
  • hyperlipidémie
  • hypercholestérolémie
  • profil lipidique
  • acide linoléique conjugué