Advertisement

Dairy Science & Technology

, Volume 88, Issue 4–5, pp 389–405 | Cite as

Cheese in nutrition and health

  • Barbara WaltherEmail author
  • Alexandra Schmid
  • Robert Sieber
  • Karin Wehrmüller
Review

Abstract

Cheese has a long history in the human diet. In ancient times, cheese was primarily a concentrated form of milk with the benefit of a prolonged shelf life. The high content of fat and protein in cheese made it an energy-rich and nutritious food that was suitable for our hardworking ancestors. Recent advances in nutrition science have highlighted the contribution of cheese to nutrition and health. Cheese is a rich source of essential nutrients; in particular, proteins, bioactive peptides, amino acids, fat, fatty acids, vitamins and minerals. Ripened cheese is free of lactose and therefore suitable for the nutrition of lactose-intolerant individuals. There is evidence to suggest that two bioactive tripeptides, VPP and IPP, found in sour milk fermented with Lactobacillus helveticus, lower blood pressure. These peptides were also detected in specific cheese varieties in significant quantities. The high concentration of essential amino acids in cheese contributes to growth and development of the human body. Despite the presence of a notable amount of saturated and trans fatty acids, there is no clear evidence relating the consumption of cheese to any disease. Conjugated linoleic acid and sphingolipids present in cheese may have anti-carcinogenic properties. The high concentration of calcium in cheese is well known to contribute to the formation and maintenance of strong bones and teeth, but also shows a positive effect on blood pressure and helps in losing weight in combination with low-energy diets. Cheese is an important dairy product and an integral part of a healthful diet due to its substantial contribution to human health. In recent times, diet has been linked to various diseases such as diabetes, obesity, cardiovascular disease, osteoporosis and cancer, and the focus of nutrition research has shifted towards specific food ingredients contributing to nutrition and health.

cheese composition nutrition health 

Abbreviations

ACE

angiotensin-converting enzyme

CLA

conjugated linoleic acid

IPP

isoleucyl-prolyl-proline

MUFA

monounsaturated fatty acid

PUFA

polyunsaturated fatty acid

SFA

saturated fatty acid

TFA

trans fatty acid

VPP

valyl-prolyl-proline

Fromage en nutrition et santé

Résumé

Le fromage a une longue tradition dans l’alimentation humaine. Autrefois, il s’agissait principalement d’une forme concentrée de lait qui avait l’avantage d’avoir une durée de conservation prolongée. Le taux élevé de lipides et de protéines dans le fromage en fait un aliment nutritif, riche en énergie, qui convenait bien à nos ancêtres travaillant durement. Des recherches récentes en nutrition ont mis en évidence la contribution du fromage dans l’alimentation et la santé. Le fromage est une source riche en nutriments essentiels, en particulier en protéines, en peptides bioactifs, en acides aminés, en lipides, en acides gras, en vitamines et en minéraux. Le fromage affiné ne contient plus de lactose et convient donc aux personnes intolérantes à ce composant. Par ailleurs, il y a tout lieu de penser que deux tripeptides bioactifs, les VPP et IPP, détectés dans le lait fermenté par Lactobacillus helveticus, abaissent la pression sanguine. Ces peptides ont aussi été détectés en quantités significatives dans divers types de fromage. La concentration élevée d’acides aminés essentiels dans le fromage contribue à la croissance et au développement du corps humain. Malgré la présence d’une quantité notable d’acides gras saturés et trans, il n’y a aucun élément de preuve mettant en relation la consommation de fromage et une quelconque maladie. Au contraire, il semble que les acides linoléiques conjugués et les sphingolipides présents dans le fromage possèdent des propriétés anti-cancérigènes. La concentration élevée de calcium dans le fromage est connue pour contribuer à la formation et au maintien d’une ossature et d’une dentition solides, mais exerce aussi un effet positif sur la pression sanguine et aide à perdre du poids en combinaison avec un régime hypocalorique. Le fromage est un produit laitier important et fait partie d’une alimentation équilibrée en raison de sa contribution substantielle à la santé humaine. Récemment, l’alimentation a été mise en relation avec diverses maladies comme le diabète, l’obésité, les maladies cardiovasculaires, l’ostéoporose et le cancer. En conséquence, l’accent a été mis, dans les recherches sur la nutrition, sur des ingrédients alimentaires spécifiques, contribuant à une alimentation saine et donc à la santé.

fromage composition alimentation santé 

Abstract

(Lactobacillus helveticus) 2 VPP IPP,

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Allender P.S., Cutler J.A., Follmann D., Cappuccio F.P., Pryer J., Elliott P., Dietary calcium and blood pressure: a meta-analysis of randomized clinical trials, Ann. Intern. Med. 124 (1996) 825–831.Google Scholar
  2. [2]
    Appel L.J., Moore T.J., Obarzanek E., Vollmer W.M., Svetkey L.P., Sacks F.M., Bray G.A., Vogt T.M., Cutler J.A., Windhauser M.M., Lin P.H., Karanja N., A clinical trial of the effects of dietary patterns on blood pressure, N. Engl. J. Med. 336 (1997) 1117–1124.Google Scholar
  3. [3]
    Ashley F.P., Coward P.Y., Jalil R.A., Wilson R.F., Relationship between calcium and inorganic phosphorus concentrations of both resting and stimulated saliva and dental plaque in children and young adults, Arch. Oral Biol. 36 (1991) 431–434.Google Scholar
  4. [4]
    Bachmann H.P., Bütikofer U., Sieber R., Über das Vorkommen von bioaktiven Peptiden in Käse, Mitt. Lebensm. Hyg. 94 (2003) 136–154.Google Scholar
  5. [5]
    Behn A., Ur E., The obesity epidemic and its cardiovascular consequences, Curr. Opin. Cardiol. 21 (2006) 353–360.Google Scholar
  6. [6]
    Belury M.A., Inhibition of carcinogenesis by conjugated linoleic acid: Potential mechanisms of action, J. Nutr. 132 (2002) 2995–2998.Google Scholar
  7. [7]
    Bizik B.K., Ding W., Cerklewski F.L., Evidence that bone resorption of young men is not increased by high dietary phosphorus obtained from milk and cheese, Nutr. Res. 16 (1996) 1143–1146.Google Scholar
  8. [8]
    Boursier V., Metabolic syndrome, J. Mal. Vasc. 31 (2006) 190–201.Google Scholar
  9. [9]
    Braun S.D., Nimmagudda R., Methods for treating or preventing diseases of the oral cavity, US Patent 6890900 (2005).Google Scholar
  10. [10]
    Bucher H.C., Cook R.J., Guyatt G.H., Lang J.D., Cook D.J., Hatala R., Hunt D.L., Effects of dietary calcium supplementation on blood pressure: a meta-analysis of randomized controlled trials, J. Am. Med. Ass. 275 (1996) 1016–1022.Google Scholar
  11. [11]
    Bütikofer U., Meyer J., Sieber R., Walther B., Wechsler D., Occurrence of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in different cheese varieties of Swiss origin, J. Dairy Sci. 91 (2008) 29–38.Google Scholar
  12. [12]
    Bütikofer U., Meyer J., Sieber R., Wechsler D., Quantification of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semi-hard and soft cheeses, Int. Dairy J. 17 (2007) 968–975.Google Scholar
  13. [13]
    Chardigny J.M., Destaillat F., Malpuech-Brugère C., Moulin J., Bauman D.E., Lock A.L., Barbano D.M., Mensink R.P., Bezelgues J.B., Chaumont P., Combe N., Cristiani I., Joffre F., German J.B., Dionisi E., Boirie Y., Sébédio J.L., Do trans fatty acids from industrially produced sources and from natural sources have the same effect on cardiovascular disease risk factors in healthy subjects? Results of the trans Fatty Acids Collaboration (TRANSFACT) study, Am. J. Clin. Nutr. 87 (2008) 558–566.Google Scholar
  14. [14]
    Cheng S., Lyytikainen A., Kroger H., Lamberg-Allardt C., Alen M., Koistinen A., Wang Q.J., Suuriniemi M., Suominen H., Mahonen A., Nicholson P.H.F., Ivaska K.K., Korpela R., Ohlsson C., Vaananen K.H., Tylavsky F., Effects of calcium, dairy product, and vitamin D supplementation on bone mass accrual and body composition in 10–12-y-old girls: a 2-y randomized trial, Am. J. Clin. Nutr. 82 (2005) 1115–1126.Google Scholar
  15. [15]
    Colakoglu S., Colakoglu M., Taneli F., Cetinoz F., Turkmen M., Cumulative effects of conjugated linoleic acid and exercise on endurance development, body composition, serum leptin and insulin levels, J. Sports Med. Phys. Fitness 46 (2006) 570–577.Google Scholar
  16. [16]
    Collomb M., Bütikofer U., Sieber R., Bosset J.O., Jeangros B., Conjugated linoleic acid and trans fatty acid composition of cows’ milk fat produced in lowlands and highlands, J. Dairy Res. 68 (2001) 519–523.Google Scholar
  17. [17]
    Djoussé L., Pankow J.S., Hunt S.C., Heiss G., Province M.A., Kabagambe E.K., Ellison R.C., Influence of saturated fat and linolenic acid on the association between intake of dairy products and blood pressure, Hypertension 48 (2006) 335–341.Google Scholar
  18. [18]
    Dreizen S.A.M.U., Dreizen J.G., Stone R.E., The effect of cow’s milk on dental caries in the rat, J. Dent. Res. 40 (1961) 1025–1028.Google Scholar
  19. [19]
    Edgar W.M., Bowen W.H., Amsbaugh S., Monell-Torrens E., Brunelle J., Effects of different eating patterns on dental caries in the rat, Caries Res. 16 (1982) 384–389.Google Scholar
  20. [20]
    Eichholzer M., Camenzind E., Matzke A., Amadò R., Ballmer P.E., Beer M., Darioli R., Hasler K., Lüthy J., Moser U., Sieber R., Trabichet C., Fünfter Schweizerischer Ernährungsbericht, Bundesamt für Gesundheit, Bern, 2005.Google Scholar
  21. [21]
    Foltz M., Meynen E.E., Bianco V., van Platerink C., Koning T.M.M.G., Kloek J., Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation, J. Nutr. 137 (2007) 953–958.Google Scholar
  22. [22]
    Fox P.F., O’Connor T.P., McSweeney P.L.H., Guinee T.P., O’Brien N.M., Cheese: physical, biochemical, and nutritional aspects, Adv. Food Nutr. Res. 39 (1995) 163–328.Google Scholar
  23. [23]
    German J.B., Dillard C.J., Saturated fats: what dietary intake?, Am. J. Clin. Nutr. 80 (2004) 550–559.Google Scholar
  24. [24]
    Glabska D., Sinska B., Remiszewski A., [Analysis of the dependence between milk and dairy products consumption, and dental caries observed in group of children and teenagers], Rocz. Panstw. Zakl. Hig. 58 (2007) 69–75.Google Scholar
  25. [25]
    Gómez-Ruiz J.Á., Ramos M., Recio I., Angiotensin-converting enzyme-inhibitory peptides in Manchego cheeses manufactured with different starter cultures, Int. Dairy J. 12 (2002) 697–706.Google Scholar
  26. [26]
    Gómez-Ruiz J.Á., Ramos M., Recio I., Identification and formation of angiotensin-converting enzyme-inhibitory peptides in Manchego cheese by high-performance liquid chromatography-tandem mass spectrometry, J. Chromatogr. A 1054 (2004) 269–277.Google Scholar
  27. [27]
    Gómez-Ruiz J.Á., Taborda G., Amigo L., Recio I., Ramos M., Identification of ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry, Eur. Food Res. Technol. 223 (2006) 595–601.Google Scholar
  28. [28]
    Guggenheim B., Schmid R., Aeschlimann J.M., Berrocal R., Neeser J.R., Powdered milk micellar casein prevents oral colonization by Streptococcus sobrinus and dental caries in rats: A basis for the caries-protective effect of dairy products, Caries Res. 33 (1999) 446–454.Google Scholar
  29. [29]
    Hata Y., Yamamoto M., Ohni M., Nakajima K., Nakamura Y., Takano T., A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects, Am. J. Clin. Nutr. 64 (1996) 767–771.Google Scholar
  30. [30]
    Hayes K.C., Pronczuk A., Lindsey S., Diersenschade D., Dietary saturated fatty acids (12:0, 14:0, 16:0) differ in their impact on plasma cholesterol and lipoproteins in nonhuman primates, Am. J. Clin. Nutr. 53 (1991) 491–498.Google Scholar
  31. [31]
    Heaney R.P., Calcium, dairy products and osteoporosis, J. Am. Coll. Nutr. 19 (2000) 83S-99S.Google Scholar
  32. [32]
    Heaney R.P., Calcium intake and disease prevention, Arq. Bras. Endocrinol. Metabol. 50 (2006) 685–693.Google Scholar
  33. [33]
    Henry H.J., McCarron D.A., Morris C.D., Parrott-Garcia M., Increasing calcium intake lowers blood pressure: the literature reviewed, J. Am. Diet. Assoc. 85 (1985) 182–185.Google Scholar
  34. [34]
    Heyman M.B., for the Committee on nutrition, Lactose intolerance in infants, children, and adolescents, Pediatrics 118 (2006) 1279–1286.Google Scholar
  35. [35]
    Higurashi S., Kunieda Y., Matsuyama H., Kawakami H., Effect of cheese consumption on the accumulation of abdominal adipose and decrease in serum adiponectin levels in rats fed a calorie dense diet, Int. Dairy J. 17 (2007) 1224–1231.Google Scholar
  36. [36]
    Huang T.T., McCrory M.A., Dairy intake, obesity, and metabolic health in children and adolescents: knowledge and gaps, Nutr. Rev. 63 (2005) 71–80.Google Scholar
  37. [37]
    IDF, The world dairy situation 2006, 409 (2006) 1–92.Google Scholar
  38. [38]
    IDF, The world dairy situation 2007, 423 (2007) 1–97.Google Scholar
  39. [39]
    Jakobsen M.U., Overvad K., Dyerberg J., Heitmann B.L., Intake of ruminant trans fatty acids and risk of coronary heart disease, Int. J. Epidemiol. 37 (2008) 173–182.Google Scholar
  40. [40]
    Jenkins G.N., Ferguson D.B., Milk and dental caries, Brit. Dent. J. 120 (1966) 472–477.Google Scholar
  41. [41]
    Jensen M.E., Donly K., Wefel J.S., Assessment of the effect of selected snack foods on the remineralization/ demineralization of enamel and dentin, J. Contemp. Dent. Pract. 1 (2000) 1–17.Google Scholar
  42. [42]
    Jensen M.E., Harlander S.K., Schachtele C.F., Evaluation of the acidogenic and antacid properties of cheeses by telemetric monitoring of human dental plaque pH, in: Hefferren J.J., Osborn J.C., Koehler H.M. (Eds.), Foods, Nutrition and Dental Health, American Dental Association, Chicago, USA, 1984, pp. 31–47.Google Scholar
  43. [43]
    Kato K., Takada Y., Matsuyama H., Kawasaki Y., Aoe S., Yano H., Toba Y., Milk calcium taken with cheese increases bone mineral density and bone strength in growing rats, Biosci. Biotechnol. Biochem. 66 (2002) 2342–2346.Google Scholar
  44. [44]
    Lam G.A., Mobarhan S., Central obesity and elevated liver enzymes, Nutr. Rev. 62 (2004) 394–399.Google Scholar
  45. [45]
    Larsen T.M., Toubro S., Gudmundsen O., Astrup A., Conjugated linoleic acid supplementation for 1 y does not prevent weight or body fat regain, Am. J. Clin. Nutr. 83 (2006) 606–612.Google Scholar
  46. [46]
    Laso N., Brugué E., Vidal J., Ros E., Arnaiz J.A., Carné X., Vidal S., Mas S., Deulofeu R., Lafuente A., Effects of milk supplementation with conjugated linoleic acid (isomers cis-9, trans-11 and trans-10, cis-12) on body composition and metabolic syndrome components, Brit. J. Nutr. 98 (2007) 860–867.Google Scholar
  47. [47]
    Law B.A., Flavour development in cheeses, in: Davies F.L., Law B.A. (Eds.), Advances in the microbiology and biochemistry of cheese and fermented milk, Elsevier Appl. Sci. Publ., London, UK, 1984, pp. 187–208.Google Scholar
  48. [48]
    Li G.H., Le G.W., Shi Y.H., Shrestha S., Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects, Nutr. Res. 24 (2004) 469–486.Google Scholar
  49. [49]
    Lin Y.C., Lyle R.M., McCabe L.D., McCabe G.P., Weaver C.M., Teegarden D., Dairy calcium is related to changes in body composition during a two-year exercise intervention in young women, J. Am. Coll. Nutr. 19 (2000) 754–760.Google Scholar
  50. [50]
    Massey L.K., Dairy food consumption, blood pressure and stroke, J. Nutr. 131 (2001) 1875–1878.Google Scholar
  51. [51]
    Masuda O., Nakamura Y., Takano T., Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats, J. Nutr. 126 (1996) 3063–3068.Google Scholar
  52. [52]
    Matlik L., Savaiano D., McCabe G., VanLoan M., Blue C.L., Boushey C.J., Perceived milk intolerance is related to bone mineral content in 10-to 13-year-old female adolescents, Pediatrics 120 (2007) e669-e677.Google Scholar
  53. [53]
    McCarron D.A., Reusser M.E., Hypertensive cardiovascular disease: risk reduction by dietary calcium and dairy foods, Sci. Alim. 22 (2002) 415–421.Google Scholar
  54. [54]
    Meisel H., Walsh D.J., Murray B., FitzGerald R.J., ACE inhibiting peptides, in: Mine Y., Shahidi F. (Eds.), Nutraceutical proteins and peptides in health and disease, CRC Press, Boca Raton, USA, 2006, pp. 269–315.Google Scholar
  55. [55]
    Metz J.A., Morris C.D., Roberts L.A., McClung M.R., McCarron D.A., Blood pressure and calcium intake are related to bone density in adult males, Brit. J. Nutr. 81 (1999) 383–388.Google Scholar
  56. [56]
    Miller G.D., DiRienzo D.D., Reusser M.E., McCarron D.A., Benefits of dairy product consumption on blood pressure in humans: a summary of the biomedical literature, J. Am. Coll. Nutr. 19 (2000) 147S-164S.Google Scholar
  57. [57]
    Mizushima S., Ohshige K., Watanabe J., Kimura M., Kadowaki T., Nakamura Y., Tochikubo O., Ueshima H., Randomized controlled trial of sour milk on blood pressure in borderline hypertensive men, Am. J. Hypertens. 17 (2004) 701–706.Google Scholar
  58. [58]
    Molimard P., Spinnler H.E., Review: compounds involved in the flavor of surface mold-ripened cheeses: origins and properties, J. Dairy Sci. 79 (1996) 169–184.Google Scholar
  59. [59]
    Mourao D.M., Bressan J., Campbell W.W., Mattes R.D., Effects of food form on appetite and energy intake in lean and obese young adults, Int. J. Obes. 31 (2007) 1688–1695.Google Scholar
  60. [60]
    Moynihan P.J., Ferrier S., Jenkins G.N., The cariostatic potential of cheese: cooked cheese-containing meals increase plaque calcium concentration, Brit. Dent. J. 187 (1999) 664–667.Google Scholar
  61. [61]
    Nagpal R., Yadav H., Puniya A.K., Singh K., Jain S., Marotta F., Conjugated linoleic acid: sources, synthesis and potential health benefits — an overview, Curr. Topics Nutraceut. Res. 5 (2007) 55–65.Google Scholar
  62. [62]
    Nakamura Y., Kajimoto O., Kaneko K., Aihara K., Mizutani J., Ikeda N., Nishimura A., Kajimoto Y., Effects of the liquid yogurts containing “lactotripeptide (VPP, IPP)” on high-normal blood pressure, J. Nutr. Food 7 (2004) 123–137.Google Scholar
  63. [63]
    Nakamura Y., Yamamoto N., Sakai K., Takano T., Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme, J. Dairy Sci. 78 (1995) 1253–1257.Google Scholar
  64. [64]
    Nammi S., Koka S., Chinnala K.M., Boini K.M., Obesity: an overview on its current perspectives and treatment options, Nutr. J. 3 (2004) 3–10.Google Scholar
  65. [65]
    Narva M., Rissanen J., Halleen J., Vapaatalo H., Väänänen K., Korpela R., Effects of bioactive peptide, Valyl-Prolyl-Proline (VPP), and Lactobacillus helveticus fermented milk containing VPP on bone loss in ovariectomized rats, Ann. Nutr. Metab. 51 (2007) 65–74.Google Scholar
  66. [66]
    Ouignard-Boulange A., Clouet P., Schmitt B., Effects of dietary conjugated linoleic acids in the control of adiposity and obesity-related disorders, Eur. J. Lipid Sci. Technol. 109 (2007) 935–944.Google Scholar
  67. [67]
    Pan D., Luo Y.K., Tanokura M., Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004, Food Chem. 91 (2005) 123–129.Google Scholar
  68. [68]
    Pariza M.W., Perspective on the safety and effectiveness of conjugated linoleic acid, Am. J. Clin. Nutr. 79 (2004) 1132S-1136S.Google Scholar
  69. [69]
    Pi-Sunyer F.X., Health implications of obesity, Am. J. Clin. Nutr. 53 (1991) 1595S-1603S.Google Scholar
  70. [70]
    Pludowski P., Litwin M., Sladowska J., Antoniewicz J., Niemirska A., Wierzbicka A., Lorenc R.S., Bone mass and body composition in children and adolescents with primary hypertension: preliminary data, Hypertension 51 (2008) 77–83.Google Scholar
  71. [71]
    Reynolds E.C., Johnson I.H., Effect of milk on caries incidence and bacterial composition of dental plaque in the rat, Arch. Oral Biol. 26 (1981) 445–451.Google Scholar
  72. [72]
    Rioux V., Catheline D., Bouriel M., Legrand P., Dietary myristic acid at physiologically relevant levels increases the tissue content of C20:5 n-3 and C20:3 n-6 in the rat, Reprod. Nutr. Dev. 45 (2005) 599–612.Google Scholar
  73. [73]
    Rioux V., Daval S., Guillou H., Jan S., Legrand P., Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation, Reprod. Nutr. Dev. 43 (2003) 419–430.Google Scholar
  74. [74]
    Rioux V., Legrand P., Saturated fatty acids: simple molecular structures with complex cellular functions, Curr. Opin. Clin. Nutr. Metab. Care 10 (2007) 752–758.Google Scholar
  75. [75]
    Rosell M., Hakansson N.N., Wolk A., Association between dairy food consumption and weight change over 9 y in 19 352 perimenopausal women, Am. J. Clin. Nutr. 84 (2006) 1481–1488.Google Scholar
  76. [76]
    Roth J., Qiang X., Marban S.L., Redelt H., Lowell B.C., The obesity pandemic: where have we been and where are we going?, Obes. Res. 12 (2004) 88S-101S.Google Scholar
  77. [77]
    Rugg-Gunn A.J., Edgar W.M., Geddes D.A.M., Jenkins G.N., The effect of different meal patterns upon plaque pH in human subjects, Br. Dent. J. 139 (1975) 351–356.Google Scholar
  78. [78]
    Ruidavets J.B., Bongard V., Simon C., Dallongeville J., Ducimetiere P., Arveiler D., Amouyel P., Bingham A., Ferrieres J., Independent contribution of dairy products and calcium intake to blood pressure variations at a population level, J. Hypertens. 24 (2006) 671–681.Google Scholar
  79. [79]
    Sacks F.M., Svetkey L.P., Vollmer W.M., Appel L.J., Bray G.A., Harsha D., Obarzanek E., Conlin P.R., Miller E.R., Simons-Morton D.G., Karanja N., Lin P.H., Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet, N. Engl. J. Med. 344 (2001) 3–10.Google Scholar
  80. [80]
    Saito T., Nakamura T., Kitazawa H., Kawai Y., Itoh T., Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese, J. Dairy Sci. 83 (2000) 1434–1440.Google Scholar
  81. [81]
    Salter A.M., Mangiapane E.H., Bennett A.J., Bruce J.S., Billett M.A., Anderton K.L., Marenah C.B., Lawson N., White D.A., The effect of different dietary fatty acids on lipoprotein metabolism: concentration-dependent effects of diets enriched in oleic, myristic, palmitic and stearic acids, Brit. J. Nutr. 79 (1998) 195–202.Google Scholar
  82. [82]
    Schmid A., Schneider H., Golay A., Keller U., Economic burden of obesity and its comorbidities in Switzerland, Soz. Präventivmed. 50 (2005) 87–94.Google Scholar
  83. [83]
    Schramm M.M., Cauley J.A., Sandler R.B., Slemenda C.W., Lack of an association between calcium intake and blood pressure in postmenopausal women, Am. J. Clin. Nutr. 44 (1986) 505–511.Google Scholar
  84. [84]
    Seppo L., Jauhiainen T., Poussa T., Korpela R., A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects, Am. J. Clin. Nutr. 77 (2003) 326–330.Google Scholar
  85. [85]
    Shimizu H., Nakagami H., Osako M.K., Hanayama R., Kunugiza Y., Kizawa T., Tomita T., Yoshikawa H., Ogihara T., Morishita R., Angiotensin II accelerates osteoporosis by activating osteoclasts, FASEB J. 22 (2008) 2465–2475.Google Scholar
  86. [86]
    Sieber R., Zusammensetzung von Milch und Milchprodukten schweizerischer Herkunft, FAM-Information (2001) 1–23, available at http://www.db-alp.admin. ch/de/publikationen/docs/pub_SieberR_ 2001_15231.pdf.Google Scholar
  87. [87]
    Sieber R., Käse — ein wertvolles Lebensmittel in der menschlichen Ernährung, Mitt. Lebensm. Hyg. 96 (2005) 141–170.Google Scholar
  88. [88]
    Sieber R., Badertscher R., Fuchs D., Nick B., Beitrag zur Kenntnis der Zusammensetzung schweizerischer konsumreifer Weich- und Halbhartkäse, Mitt. Geb. Lebensm.-Unters.-Hyg. 85 (1994) 366–381.Google Scholar
  89. [89]
    Sieber R., Stransky M., de Vrese M., Laktoseintoleranz und Verzehr von Milch und Milchprodukten, Z. Ernährungswiss. 36 (1997) 375–393.Google Scholar
  90. [90]
    Silva S.V., Pihlanto A., Malcata F.X., Bioactive peptides in ovine and caprine cheeselike systems prepared with proteases from Cynara cardunculus, J. Dairy Sci. 89 (2006) 3336–3344.Google Scholar
  91. [91]
    Silveira M.B., Carraro R., Monereo S., Tebar J., Conjugated linoleic acid (CLA) and obesity, Public Health Nutr. 10 (2007) 1181–1186.Google Scholar
  92. [92]
    Simon J.A., Browner W.S., Tao J.L., Hulley S.B., Calcium intake and blood pressure in elderly women, Am. J. Epidemiol. 136 (1992) 1241–1247.Google Scholar
  93. [93]
    Sipola M., Finckenberg P., Korpela R., Vapaatalo H., Nurminen M.L., Effect of long-term intake of milk products on blood pressure in hypertensive rats, J. Dairy Res. 69 (2002) 103–111.Google Scholar
  94. [94]
    Smacchi E., Gobbetti M., Peptides from several Italian cheeses inhibitory to proteolytic enzymes of lactic acid bacteria, Pseudomonas fluorescens ATCC 948 and to the angiotensin I-converting enzyme, Enzyme Microb. Technol. 22 (1998) 687–694.Google Scholar
  95. [95]
    Snijder M.B., van der Heijden A., van Dam R.M., Stehouwer C.D.A., Hiddink G.J., Nijpels G., Heine R.J., Bouter L.M., Dekker J.M., Is higher dairy consumption associated with lower body weight and fewer metabolic disturbances? The Hoorn Study, Am. J. Clin. Nutr. 85 (2007) 989–995.Google Scholar
  96. [96]
    Steffen C., Enzymatische Bestimmungsmethoden zur Erfassung der Gärungsvorgänge in der milchwirtschaftlichen Technologie, Lebensm.-Wiss. Technol. 8 (1975) 1–6.Google Scholar
  97. [97]
    Stepaniak L., Jedrychowski L., Wroblewska B., Sørhaug T., Immuno-reactivity and inhibition of angiotensin-I converting enzyme and lactococcal oligopeptidase by peptides from cheese, Ital. J. Food Sci. 13 (2001) 373–381.Google Scholar
  98. [98]
    Subcommittee on the 10th Edition of the Recommended Dietary Allowances, Food and Nutrition Board, National Research Council, Recommended Dietary Allowances, National Academic Press, 1989.Google Scholar
  99. [99]
    Temme E.H.M., Mensink R.P., Hornstra G., Comparison of the effects of diets enriched in lauric, palmitic, or oleic acids on serum lipids and lipoproteins in healthy women and men, Am. J. Clin. Nutr. 63 (1996) 897–903.Google Scholar
  100. [100]
    Terpstra A.H., Effect of conjugated linoleic acid on body composition and plasma lipids in humans: an overview of the literature, Am. J. Clin. Nutr. 79 (2004) 352–361.Google Scholar
  101. [101]
    Tomé D., Bos C., Mariotti F., Gaudichon C., Protein quality and FAO/WHO recommendations, Sci. Alim. 22 (2002) 393–405.Google Scholar
  102. [102]
    Trevisan M., Krogh V., Farinaro E., Panico S., Mancini M., Calcium-rich foods and blood pressure: findings from the Italian National Research Council Study (the Nine Communities Study), Am. J. Epidemiol. 127 (1988) 1155–1163.Google Scholar
  103. [103]
    Trowman R., Dumville J.C., Hahn S., Torgerson D.J., A systematic review of the effects of calcium supplementation on body weight, Brit. J. Nutr. 95 (2006) 1033–1038.Google Scholar
  104. [104]
    Tuomilehto J., Lindström J., Hyyrynen J., Korpela R., Karhunen M.L., Mikkola L., Jauhiainen T., Seppo L., Nissinen A., Effect of ingesting sour milk fermented using Lactobacillus helveticus bacteria producing tripeptides on blood pressure in subjects with mild hypertension, J. Hum. Hypertens. 18 (2004) 795–802.Google Scholar
  105. [105]
    Vedamuthu E.R., Washam C., Cheese, in: Reed G. (Ed.), Biotechnology, Verlag Chemie, Weinheim, Germany, 1983, pp. 231–313.Google Scholar
  106. [106]
    Vesper H., Schmelz E.M., Nikolova-Karakashian M.N., Dillehay D.L., Lynch D.V., Merrill A.H., Sphingolipids in food and the emerging importance of sphingolipids to nutrition, J. Nutr. 129 (1999) 1239–1250.Google Scholar
  107. [107]
    Wang Y.W., Jones P.J.H., Dietary conjugated linoleic acid and body composition, Am. J. Clin. Nutr. 79 (2004) 1153S-1158S.Google Scholar
  108. [108]
    Watras A.C., Buchholz A.C., Close R.N., Zhang Z., Schoeller D.A., The role of conjugated linoleic acid in reducing body fat and preventing holiday weight gain, Int. J. Obes. 31 (2007) 481–487.Google Scholar
  109. [109]
    Wehrmüller K., Occurrence and biological properties of sphingolipids — a review, Curr. Nutr. Food Sci. 3 (2007) 161–173.Google Scholar
  110. [110]
    Willett W.C., Trans fatty acids and cardiovascular disease — epidemiological data, Atherosclerosis, Suppl. 7 (2006) 5–8.Google Scholar
  111. [111]
    Willett W.C., Stampfer M.J., Manson J.E., Colditz G.A., Speizer F.E., Rosner B.A., Sampson L.A., Hennekens C.H., Intake of trans fatty acids and risk of coronary heart disease among women, Lancet 341 (1993) 581–585.Google Scholar
  112. [112]
    World Cancer Research Fund/American Institute for Cancer Research, Food, nutrition, physical activity, and the prevention of cancer: a global perspective, Washington DC, AICR (2007) 1–537.Google Scholar
  113. [113]
    Zemel M.B., Calcium and dairy modulation of obesity risk, Obes. Res. 13 (2005) 192–193.Google Scholar
  114. [114]
    Zemel M.B., Miller S.L., Dietary calcium and dairy modulation of adiposity and obesity risk, Nutr. Rev. 62 (2004) 125–131.Google Scholar
  115. [115]
    Zemel M.B., Shi H., Greer B., DiRienzo D., Zemel P.C., Regulation of adiposity by dietary calcium, FASEB J. 14 (2000) 1132–1138.Google Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Barbara Walther
    • 1
    Email author
  • Alexandra Schmid
    • 1
  • Robert Sieber
    • 1
  • Karin Wehrmüller
    • 1
  1. 1.Agroscope Liebefeld-Posieux Research Station ALPBerneSwitzerland

Personalised recommendations