Dairy Science & Technology

, Volume 88, Issue 1, pp 121–147 | Cite as

Role of protein aggregation in heat-induced heat stability during milk powder manufacture

  • Roderick P. W. Williams
  • Lynette D’Ath
  • Bogdan Zisu
Original Article


Although the inherent heat stability and the processes leading to the heat-induced coagulation of milk and reconstituted milk powders have been studied extensively, the processes that lead to heat-induced heat stability are less well established. An investigation has been undertaken into the effects of standardization with milk permeate or lactose and the heat-stabilization of milk powders. Standardized and unstandardized milk powders were produced in spring and autumn to determine seasonal effects on their heat stability. Other standardized powders were produced using a range of preheat treatments (85 °C/1800 s, 120 °C/120 s, and 140 °C/5 s) to evaluate the effects of preheat treatment and standardization on the heat stability of milk powders. Micelle size and the soluble aggregates formed during the preheat treatment were characterized by a combination of size-exclusion chromatography and SDS-PAGE. The heat stability of the powders was evaluated in a bench-scale model of retorted recombined evaporated milk manufacture. As has been generally accepted, the heat stability may be mediated by the way in which the milk responds to the preheat treatment given during milk powder manufacture. However, we have found that causing the denaturation of the whey proteins in itself, as is indicated by analytical measures such as the whey protein nitrogen index (WPNI) is not sufficient to impart heat stability. Our work suggests that milks with good heat stability are achieved by heating to give a low WPNI and a balance of moderately sized soluble aggregates and a decrease in the proportion of smaller micelles. The formation of these aggregates is influenced by the heating regime applied and varies at different times of year.

heat stability milk protein aggregation micellar integrity 

Rôle de l’agrégation des protéines dans la stabilité thermique thermo-induite au cours de la fabrication de poudre de lait


Bien que la stabilité thermique inhérente et les processus conduisant à la coagulation thermo-induite du lait et des poudres de lait reconstituées aient été largement étudiés, les processus qui conduisent à la stabilité thermique thermo-induite sont moins bien établis. Une étude a été entreprise concernant les effets de la standardisation avec du perméat de lait ou du lactose et la stabilisation thermique des poudres de lait. Des poudres de lait, standardisé et non standardisé, ont été produites au printemps et en automne pour déterminer l’effet saison sur leur stabilité thermique. D’autres poudres standardisées ont été produites en appliquant différents prétraitements thermiques (85 °C/1800 s, 120 °C/120 s et 140 °C/5 s) pour évaluer les effets du prétraitement et de la standardisation sur la stabilité thermique des poudres de lait. La taille des micelles et les agrégats solubles formés au cours du prétraitement thermique ont été caractérisés en combinant chromatographie d’exclusion de taille et électrophorèse SDS-PAGE. La stabilité thermique des poudres était évaluée à l’aide d’un modèle simulant à l’échelle de la paillasse la fabrication de lait en poudre recombiné. On considère en général que la stabilité thermique dépend de la façon avec laquelle le lait répond au prétraitement thermique appliqué au cours de la fabrication de poudre. Cependant, nous avons trouvé que la dénaturation des protéines de lactosérum, comme indiquée par des mesures analytiques tel que l’indice d’azote des protéines de lactosérum (WPNI), n’est pas en soi un critère suffisant pour dire qu’il y a stabilité thermique. Notre travail suggère que des laits de bonne stabilité thermique s’obtiennent par chauffage donnant un WPNI bas et un équilibre entre agrégats solubles de taille modérée et une diminution de la proportion des plus petites micelles. La formation de ces agrégats est influencée par le chauffage appliqué et varie au cours des périodes de l’année.

stabilité thermique agrégation des protéines laitières micelle 


(85 °C/1800 s 120 °C/120 s 140 °C/5s) SDS-PAGE (WPNI) WPNI


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    American Dry Milk Institute, Standards for grades of dry milks including methods of analysis, Bulletin 916, American Dry Milk Institute, Chicago (1971) p. 9.Google Scholar
  2. [2]
    Anema S.G., Klostermeyer H., The effect of pH and heat treatments on the κ-casein content and the ζ potential of the particles in reconstituted skim milk, Milchwissenschaft 52 (1997) 217–222.Google Scholar
  3. [3]
    Anema S.G., Li Y., Further studies on the heat-induced pH dependent dissociation of casein from the micelles in reconstituted skim milk, Lebensm.-Wiss. Technol. 33 (2000) 335–343.CrossRefGoogle Scholar
  4. [4]
    Anema S., Li Y., Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size, J. Dairy Res. 70 (2003) 73–83.CrossRefGoogle Scholar
  5. [5]
    Augustin M.A., Ingredients for recombination of dairy products, in Proceedings of the 3rd international symposium on recombined milk & Milk products, Special issue 9902, Int. Dairy Fed., Brussels, Belgium (1999) pp. 66–70.Google Scholar
  6. [6]
    Augustin M.A., Clarke P.T., Effects of added salts on the heat stability of recombined concentrated milk, J. Dairy Res. 57 (1990) 213–226.CrossRefGoogle Scholar
  7. [7]
    Augustin M.A., Clarke P.T., Calcium ion activities of cooled and aged reconstituted recombined milks, J. Dairy Res. 58 (1991) 219–229.CrossRefGoogle Scholar
  8. [8]
    Augustin M.A., Clarke P.T., Greenwood T., The heat stability of recombined evaporated milk made from skim milk powder produced in late autumn and winter, Aust. J. Dairy Technol. 45 (1990) 47–49.Google Scholar
  9. [9]
    Boye J.I., Alli I., Thermal denaturation of mixtures of α-lactalbumin and β-lactalbumin: A differential scanning calorimetric study, Food Res. Int. 33 (2000) 673–682.CrossRefGoogle Scholar
  10. [10]
    CODEX STAN 207-1999: Codex standard for milk powders and cream powder, viewed on line, 20 March 2007, http://www.codexalimentarius.net/download/standards/333/CXS_207e.pdf.Google Scholar
  11. [11]
    Corredig M., Dalgleish D.G., The binding of α-lactalbumin and β-lactoglobulin to casein micelles in milk treated by differing heating systems, Milchwissenschaft 51 (1996) 123–126.Google Scholar
  12. [12]
    Corredig M., Dalgleish D.G., The mechanisms of the heat-induced interaction of whey proteins with casein micelles in milk, Int. Dairy J. 9 (1999) 233–236.CrossRefGoogle Scholar
  13. [13]
    Dalgleish D.G., Pouliot Y., Paquin P., Studies on the heat stability of milk I. Behaviour of divalent cations and phosphate in milk heated in a stainless steel system, J. Dairy Res. 54 (1987) 29–37.CrossRefGoogle Scholar
  14. [14]
    Dannenberg F., Kessler H.-G., Reaction kinetics of the denaturation of whey proteins in milk, J. Food Sci. 53 (1988) 258–263.CrossRefGoogle Scholar
  15. [15]
    Darling D.F., Heat stability of milk, J. Dairy Res. 47 (1980) 199–210.CrossRefGoogle Scholar
  16. [16]
    Deysher E.F., Webb B.H., Holm G.E., The relations of temperature and time of forewarming of milk to the heat stability of its evaporated product, J. Dairy Sci. 12 (1929) 80–89.CrossRefGoogle Scholar
  17. [17]
    Donato L., Dalgleish D.G., Effect of the heating pH on the qualitative and quantitative compositions of the sera of reconstituted skim milks and on the mechanisms of formation of soluble aggregates, J. Agric. Food Chem. 54 (2006) 7804–7811.CrossRefGoogle Scholar
  18. [18]
    Guyomarc’h F., Law A.J.L., Dalgleish D.G., Formation of soluble and micelle-bound aggregates in heated milk, J. Agric. Food Chem. 51 (2003) 4652–4660.CrossRefGoogle Scholar
  19. [19]
    Hardham J.F., Effect of protein standardization of milk by addition of UF milk permeate on the composition and storage stability of UHT processed milk, Aust. J. Dairy Technol. 53 (1998) 22–27.Google Scholar
  20. [20]
    Holt C., Dalgleish D.G., Jenness R., Calculation of the ion equilibria in milk diffusate and comparison with experiment, Anal. Biochem. 113 (1981) 154–163.CrossRefGoogle Scholar
  21. [21]
    Horne D.S., Casein structure, self assembly and gelation, Curr. Opin. Colloid Interface Sci. 7 (2002) 456–461.CrossRefGoogle Scholar
  22. [22]
    Jean K., Renan M., Famelart M.-H., Guyomarc’h F., Structure and surface properties of the serum heat-induced protein aggregates isolated from heated skim milk, Int. Dairy J. 16 (2006) 303–315.CrossRefGoogle Scholar
  23. [23]
    Jou K.D., Harper W.J., Effect of disaccharides on the thermal properties of whey proteins determined by differential scanning calorimetry (DSC), Milchwissenschaft 51 (1996) 509–512.Google Scholar
  24. [24]
    Kieseker F.G., Aitken B., An objective method for the determination of heat stability of milk powders, Aust. J. Dairy Technol. 43 (1988) 26–31.Google Scholar
  25. [25]
    Klump H., DiRuggiero J., Kessel M., Park J.-B., Adams M.W.W., Robb F.T., Glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus: Thermal denaturation and activation, J. Biol. Chem. 267 (1992) 22681–22685.Google Scholar
  26. [26]
    Newstead D.F., Sanderson W.B., Bauke A.G., The effects of heat treatment and pH on the heat stability of recombined evaporated milk, N.Z.J. Dairy Sci. Technol. 10 (1975) 113–118.Google Scholar
  27. [27]
    Noh B., Richardson T., Creamer L.K., Radiolabelling study of the heat-induced interactions between alpha-lactalbumin, betalactoglobulin and kappa-casein in milk and in buffer solutions, J. Food Sci. 54 (1989) 889–893.CrossRefGoogle Scholar
  28. [28]
    O’Connell J.E., Fox P.F., The two-stage coagulation of milk proteins in the minimum of the heat coagulation time-pH profile of milk: Effect of casein micelle size, J. Dairy Sci. 83 (2000) 378–386.CrossRefGoogle Scholar
  29. [29]
    Oldfield D.J., Singh H., Taylor M.W., Pearce K.N., Heat-induced interactions of β-lactoglobulin and α-lactalbumin with the casein micelle in pH adjusted skim milk, Int. Dairy J. 10 (2000) 509–518.CrossRefGoogle Scholar
  30. [30]
    Pouliot Y., Boulet M., Observations on the seasonal variation in the salt balance of concentrated milk, Int. Dairy J. 5 (1995) 75–85.CrossRefGoogle Scholar
  31. [31]
    Ralston G., Introduction to Analytical Ultracentrifugation, Beckman Instruments Inc. Fullerton California, USA (1993) pp. 8–10.Google Scholar
  32. [32]
    Renan M., Mekmene O., Famelart M.-H., Guyomarc’h F., Arnoult-Delest V., Pâquet D., Brulé G., The pH-dependent behaviour of soluble protein aggregates formed during heat treatment of milk at pH 6.5 or 7.2, J. Dairy Res. 73 (2006) 79–86.CrossRefGoogle Scholar
  33. [33]
    Rodriguez del Angel C., Dalgleish D.G., Structures and some properties of soluble protein complexes formed by the heating of reconstituted skim milk powder, Food Res. Int. 39 (2006) 472–479.CrossRefGoogle Scholar
  34. [34]
    Singh H., Creamer L.K., Influence of concentration of milk solids on the dissociation of micellar κ-casein on heating reconstituted milk at 120°C, J. Dairy Res. 58 (1991) 99–105.CrossRefGoogle Scholar
  35. [35]
    Singh H., Creamer L.K., Aggregation and dissociation of milk protein complexes in heated reconstituted concentrated skim milks, J. Food Sci. 56 (1991) 238–246.CrossRefGoogle Scholar
  36. [36]
    Singh H., Fox P.F., Heat stability of milk: pH-dependent dissociation of micellar ϰ-casein on heating milk at ultra high temperatures, J. Dairy Res. 52 (1985) 529–538.CrossRefGoogle Scholar
  37. [37]
    Singh H., Latham J., Heat stability of milk: Aggregation and dissociation of protein at ultra high temperatures, Int. Dairy J. 3 (1993) 22–237.Google Scholar
  38. [38]
    Vasbinder A.J., Alting A.C., deKruif K.G., Quantification of heat-induced casein-whey protein interactions in milk and its relation to gelation kinetics, Colloid Surf. B 31 (2003) 115–123.CrossRefGoogle Scholar
  39. [39]
    Vasbinder A.J., deKruif K.G., Casein whey interactions in heated milk: the influence of pH, Int. Dairy J. 13 (2003) 669–777.CrossRefGoogle Scholar
  40. [40]
    Williams R.P.W., The relationship between the composition of milk and the properties of bulk milk products, Aust. J. Dairy Technol. 57 (2002) 30–44.Google Scholar
  41. [41]
    Williams R.P.W, D’Ath L., Augustin M.A., Production of calcium-fortified milk powders using soluble calcium salts, Lait 85 (2005) 369–381.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Roderick P. W. Williams
    • 1
  • Lynette D’Ath
    • 1
  • Bogdan Zisu
    • 2
  1. 1.Werribee LaboratoryFood Science AustraliaWerribeeAustralia
  2. 2.Dairy Innovation AustraliaWerribeeAustralia

Personalised recommendations