Apidologie

, Volume 39, Issue 4, pp 410–418 | Cite as

Nectar-foraging behavior of Euglossine bees (Hymenoptera: Apidae) in urban areas

  • Margarita María López-Uribe
  • Cintia Akemi Oi
  • Marco Antonio Del Lama
Original Article

Abstract

Euglossine bees have been described as long-distance pollinators because of their great flight capacities although flight capacity is not necessarily correlated to home range. Here we report the nectar-foraging behavior of two euglossine species (Euglossa cordata and Eulaema nigrita) in urban areas and the predictive power of wing wear as an age estimator of these bees, using mark-recapture techniques at Thevetia peruviana trees. A total of 870 bees were marked. Recapture rates were 33% (± 19.2) for E. cordata and 25% (± 2.5) for E. nigrita. Only 7 bees were sighted at a different site from where they were first captured. More than 75% of the individuals showed site-constancy at trees for at least 30 days. Wing wear accumulation rate was variable among individuals and it was a poor predictor of age for E. cordata. Our data show that euglossine bees may have small foraging ranges in urban areas, indicating that home ranges greatly differ from their flight capacity and homing ability.

orchid bees Euglossa cordata Eulaema nigrita mark-recapture wing wear 

Comportement de butinage du nectar des abeilles euglossines (Hymenoptera: Apidae) en zones urbaines

Euglossa cordata Eulaema nigrita marquage-recapture distance de vol usure de l’aile estimation âge 

Nektarsammelverhalten von Euglossinen Bienen (Hymenoptera: Apidae) in Stadtgebieten

Zusammenfassung

Euglossine Bienen (Prachtbienen) werden im allgemeinen als Weitdistanzbestäuber eingestuft, die grosse Sammelgebiete abdecken können. Sie sind dazu in der Lage aufgrund ihrer grossen Flugkapazität und dies obwohl Flugkapazität nicht notwendigerweise mit dem Heimatradius korreliert sein muss. In dieser Arbeit untersuchten wir das Nektarsammelverhalten von zwei Prachtbienenarten in Stadtgebieten, und wir bewerteten die Aussagekraft des Flügelabnutzungsgrads für die Altersabschätzung. Wir beschreiben zudem eine effiziente Methode zur Markierung dieser Bienen, die Etiketten leicht durch ihr intensives Putzverhalten verlieren können. Weibchen und Männchen von Euglossa cordata (nw = 596; nm = 53) und von Eulaema nigrita (nw = 106; nm = 115) (Tab. I) wurden markiert und später auf blühenden Bäumen der Art Thevetia peruviana (Apocynaceae) in einem Umkreis von 0,24–5,45 km im Stadtgebiet von São Carlos (SP, Brasilien) wiedergefangen. Die mittlere Wiederfangrate für Eg. cordata lag bei 33 % (± 19,2) und die für El. nigrita bei 25 % (± 2,5). Von den 213 wiedergefangenen Bienen wurden jedoch nur sieben an einem anderen Ort wiedergefangen als dem, an dem sie zuerst gefangen und markiert worden waren (Tab. II). Über 75 % der Bienen beider Arten zeigten ausserdem eine Ortskonstanz im Sammelverhalten an den Bäumen über mindestens 30 Tage hinweg. Bei Männchen war der Zeitraum allerdings kürzer als bei Weibchen (Abb. 3 und 4). Diese Ergebnisse weisen daraufhin, dass Prachtbienen bevorzugt über kurze Distanzen hinweg Nektar sammeln, dass sie ihre Sammelterritorien jedoch nach einiger Zeit wechseln können. Der Flügelabnutzungsgrad erwies sich als individuell stark variabel und schien bei Eg. cordata kein guter Altersindikator zu sein (Abb. 5). Unsere Daten zeigen, dass Euglossinen in Stadtgebieten aufgrund der Verteilung von Blüten relativ kleine Sammelgebiete haben können. Dies bedeutet, dass sich Heimatradien stark von den Faktoren Flugkapazität und Heimfindungsvermögen unterscheiden können.

Prachtbienen Euglossa cordata Eulaema nigrita Markierung-Wiederfang Flügelabnutzung 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman J.D., Montalvo A.M. (1985) Longevity of euglossine bees, Biotropica 17, 79–81.CrossRefGoogle Scholar
  2. Ackerman J.D., Mesler M.R., Lu K.L., Montalvo A.M. (1982) Food-foraging behavior of male Euglossini (Hymenoptera: Apidae): Vagabonds or trapliners? Biotropica 14, 241–248.CrossRefGoogle Scholar
  3. Andres J.A., Rivera A.C. (2001) Survival rates in a natural population of the damselfly Ceriagrion tenellum: effects of sex and female phenotype, Ecol. Entomol. 26, 341–346.CrossRefGoogle Scholar
  4. Augusto S.C., Garófalo C.A. (2004) Nesting biology and social structure of Euglossa (Euglossa) townsendi Cockerell (Hymenoptera, Apidae, Euglossini), Insect. Soc. 51, 400–409.CrossRefGoogle Scholar
  5. Bischoff I. (2003) Population dynamics of the solitary digger bee Andrena vaga Panzer (Hymenoptera, Andrenidae) studied using mark-recapture and nest counts, Popul. Ecol. 45, 197–204.CrossRefGoogle Scholar
  6. Cartar R.V. (1992) Morphological senescence and longevity — an experiment relating wing wear and life-span in foraging wild bumble bees, J. Anim. Ecol. 61, 225–231.CrossRefGoogle Scholar
  7. Collett T.S. (1996) Short-range navigation: does it contribute to understanding navigation over longer distances? J. Exp. Biol. 199, 225–226.PubMedGoogle Scholar
  8. Dodson C.H. (1966) Ethology of some bees of the tribe Euglossini (Hymenoptera: Apidae), J. Kans. Entomol. Soc. 39, 607–629.Google Scholar
  9. Dressler R.L. (1968) Pollination by euglossine bees, Evolution 22, 202–210.CrossRefGoogle Scholar
  10. Dressler R.L. (1982) Biology of the orchid bees (Euglossini), Annu. Rev. Ecol. Syst. 13, 373–392.CrossRefGoogle Scholar
  11. Eltz T., Whitten W.M., Roubik D.W., Linsenmair K.E. (1999) Fragrance collection, storage, and accumulation by individual male orchid bees, J. Chem. Ecol. 25, 157–176.CrossRefGoogle Scholar
  12. Folsom J.P. (1985) Dos nuevas técnicas para capturar y marcar abejas machos de la tribu Euglossini (Hymenoptera: Apidae), Actual. Biol. 14, 20–25.Google Scholar
  13. Garófalo C.A. (1985) Social structure of Euglossa cordata nests (Hymenoptera: Apidae: Euglossini), Entomol. Gen. 11, 77–83.Google Scholar
  14. Greenleaf S.S., Williams N.M., Winfree R., Kremen C. (2007) Bee foraging ranges and their relationship to body size, Oecologia 153, 589–596.PubMedCrossRefGoogle Scholar
  15. Janzen D.H. (1971) Euglossine bees as long-distance pollinators of tropical plants, Science 171, 203–205.PubMedCrossRefGoogle Scholar
  16. Janzen D.H. (1981) Bee arrival at two Costa Rican female Catasetum orchid inflorescences, and a hypothesis on euglossine population structure, Oikos 36, 177–183.CrossRefGoogle Scholar
  17. Kroodsman D.E. (1975) Flight distances of male euglossine bees in orchid pollination, Biotropica 7, 71–72.CrossRefGoogle Scholar
  18. López-Uribe M.M., Del Lama M.A. (2007) Molecular identification of species of the genus Euglossa Latreille (Hymenoptera: Apidae: Euglossini), Neotrop. Entomol. 36, 712–720.PubMedCrossRefGoogle Scholar
  19. López-Uribe M.M., Almanza M.T., Ordóñez M. (2007) Diploid male frequencies in Colombian populations of euglossine bees (Hymenoptera: Apidae: Euglossini), Biotropica 39, 660–662.CrossRefGoogle Scholar
  20. McFrederick Q.S., LeBuhn G. (2006) Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)?, Biol. Conserv. 129, 372–382.CrossRefGoogle Scholar
  21. McIntyre N.E., Hostetler M.E. (2001) Effects of urban land use on pollinator (Hymenoptera: Apoidea) communities in a desert metropolis, Basic Appl. Ecol. 236, 209–218.Google Scholar
  22. Milet-Pinheiro P., Schlindwein C. (2005) Do euglossine males (Apidae, Euglossini) leave tropical rainforest to collect fragrances in sugarcane monocultures?, Rev. Bras. Zool. 22, 853–858.CrossRefGoogle Scholar
  23. Mueller U.G., Wolf-Mueller B. (1993) A method for estimating the age of bees: Age-dependent wing wear and coloration in the wool-carder bee Anthidium manicatum (Hymenoptera: Megachilidae), J. Insect Behav. 6, 529–537.CrossRefGoogle Scholar
  24. Ne’eman G., Shavit O., Shaltiel L., Shmida A. (2006) Foraging by male and female solitary bees with implications for pollination, J. Insect Behav. 19, 383–401.CrossRefGoogle Scholar
  25. Otero J.T., Sandino J.C. (2003) Capture rates of male euglossine bees across a human intervention gradient, Chocó region, Colombia, Biotropica 35, 520–529.Google Scholar
  26. Pemberton R.W., Wheeler G.S. (2006) Orchid bees don’t need orchids: Evidence from the naturalization of an orchid bee in Florida, Ecology 87, 1995–2001.PubMedCrossRefGoogle Scholar
  27. Raw A. (1989) The dispersal of euglossine bees between isolated patches of eastern Brazilian wet forest (Hymenoptera, Apidae), Rev. Bras. Entomol. 26, 243–255.Google Scholar
  28. Roubik D.W., Weight L.A., Bonilla M.A. (1996) Population genetics, diploid males, and limits to social evolution of euglossine bees, Evolution 50, 931–935.CrossRefGoogle Scholar
  29. Schemske D.W. (1981) Floral convergence and pollinator sharing in two bee-pollinated tropical herbs, Ecology 62, 946–954.CrossRefGoogle Scholar
  30. Silva A.C.A., Garófalo C.A. (2004) Sleeping aggregation of males of Euglossa melanotricha Moure, 1967 (Hymenoptera, Apidae, Euglossini), 8th IBRA Int. Conf. on Tropical Bees and VI Encontro sobre Abelhas, p. 547, Ribeirão Preto (SP), Brazil.Google Scholar
  31. Silva C.I., Augusto S.C., Moscheta I.S. (2003) As abelhas euglossini e suas fontes de recursos florais, VI Congr. Ecol. Brasil, Vol. I, pp. 80–81, Fortaleza.Google Scholar
  32. Silva C.I., Augusto S.C., Sofia S.H., Moscheta I.S. (2007) Diversidade de abelhas em Tecoma stans (L.) Kunth (Bignoniaceae): Importância na polinização de frutos, Neotrop. Entomol. 36, 331–341.PubMedCrossRefGoogle Scholar
  33. Soares J.J., Silva D.W., Lima M.I.S. (2003) Current state and projection of the probable original vegetation of the São Carlos region of São Paulo State, Brazil, Braz. J. Biol. 63, 527–536.PubMedCrossRefGoogle Scholar
  34. SPSS v.11.0.4 (2002) SPSS Inc. Chicago, IL.Google Scholar
  35. Takahashi N.C., Peruquetti R.C., Del Lama M.A., Campos L.A.O. (2001) A reanalysis of diploid male frequencies in euglossine bees (Hymenoptera: Apidae), Evolution 55, 1897–1899.PubMedCrossRefGoogle Scholar
  36. Tonhasca A.J., Albuquerque G.S., Blackmer J.L. (2003) Dispersal of euglossine bees between fragments of the Brazilian Atlantic forest, J. Trop. Ecol. 19, 99–102.Google Scholar
  37. Westphal C., Steffan-Dewenter I., Tscharntke T. (2006) Foraging trip duration of bumblebees in relation to landscape-wide resource availability, Ecol. Entomol. 31, 389–394.CrossRefGoogle Scholar
  38. Zanette L.R.S., Martins R.P., Ribeiro S.P. (2005) Effects of urbanization on Neotropical wasp and bee assemblages in a Brazilian metropolis, Landsc. Urban Plan. 71, 105–121.CrossRefGoogle Scholar
  39. Zayed A., Roubik D.W., Packer L. (2004) Use of diploid male frequency data as an indicator of pollinator decline, Proc. R. Soc. Lond. B. (Suppl.) 271, S9-S12.CrossRefGoogle Scholar
  40. Zimmerman J.K., Madriñan S. (1988) Age structure of male Euglossa imperialis (Hymenoptera: Apidae: Euglossini), J. Trop. Ecol. 4, 303–306.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  • Margarita María López-Uribe
    • 1
  • Cintia Akemi Oi
    • 1
  • Marco Antonio Del Lama
    • 1
  1. 1.Laboratório de Genética Evolutiva de HimenópterosUniversidade Federal de São CarlosSão CarlosBrazil

Personalised recommendations