Advertisement

Apidologie

, Volume 39, Issue 1, pp 119–132 | Cite as

Correlated evolution of mating behaviour and morphology in large carpenter bees (Xylocopa)

  • Remko Leys
  • Katja Hogendoorn
Original Article

Abstract

Carpenter bees (Xylocopa) display variation in mating strategies. In several subgenera males defend territories that contain resources for females. In other subgenera males defend a small non-resource territory. Here, we investigate the correlation between three morphological traits and mating strategy. We found associations between mating strategy and male eye size, size of the mesosomal gland and sexual colour dimorphism, as well as correlative evolution between the morphological characters. Analysis of the evolutionary pathways shows that resource defence, small glands and monomorphic sexes are ancestral states. Increases in gland size seem to precede or coincide with changes in mating behaviour, but changes towards sexual dimorphism follow changes in mating behaviour. Once a non-resource defence strategy with correlated morphology has evolved there are no reversals to the ancestral states. We discuss the types of selection that may have caused these correlative changes.

correlated evolution molecular phylogeny mating sexual selection Xylocopa 

Évolution corrélée du comportement d’accouplement et de la morphologie chez les abeilles charpentières (Xylocopa sp.)

Xylocopa évolution corrélée sélection sexuelle accouplement phylogenèse moléculaire Apidae 

Korrelierte Evolution des Paarungsverhaltens und der Morphologie bei großen Holzbienen (Xylocopa sp)

Zusammenfassung

Große Holzbienen (Gattung Xylocopa) sind sehr unterschiedlich in ihren Paarungsstrategien. In vielen Untergattungen verteidigen die Männchen Territorien, die Ressourcen für die Weibchen enthalten, wie etwa Blüten oder Nistplätze. In anderen Unterordnungen werden verteilte Paarungsplätze (Leks) gefunden, in denen einzelne Männchen kleine Territorien verteidigen, die keine Ressourcen enthalten. Zusätzlich zu dieser Variation der Paarungs Strategien findet man große Unterschiede in der Morphologie der Männchen und in der Farbverschiedenheit zwischen den Geschlechtern. Die zwei wichtigsten morphologischen Unterschiede sind die Größe der männlichen mesosomalen Drüsen, die ein Paarungspheromon erzeugen und die Größe der Augen der Männchen. Sie können erheblich größer oder gleich groß sein wie die der Weibchen.

Eine auf zwei nuklearen und zwei mitochondrialen Gensequenzen beruhende gut aufgelöste Phylogenie der Untergattungen (Leys, 2002) erlaubt die Nutzung einer Bayesischen Analyse (Bayestraits) zur Untersuchung des Zusammenhangs zwischen den morphologischen Charakteren (Augengröße, mesosomale Drüsengröße und sexuelle Färbung des Männchens) und der Paarungsstrategie.

Wir fanden eine signifikante Assoziation zwischen der Paarungsstrategie und den morphologischen Eigenschaften, sowie eine signifikante korrelative Evolution zwischen den morphologischen Charakteren. Eine Analyse der evolutionären Abläufe legt nahe, dass die Verteidigung von Ressourcen, kleine Drüsen und gleichgestaltige Geschlechter den ursprünglichen Zustand darstellen. Allerdings blieb der ursprüngliche Zustand der Augengröße unklar. Der Zuwachs der Drüsengröße ging offensichtlich der Änderung im Paarungsverhaltens voran oder ist gleichzeitig aufgetreten, während Änderungen des Sexualdimorphismus erst nach den Änderungen des Paarungsverhaltens erfolgten. Sobald sich eine ressourcenunabhängige Verteidigungsstrategie mit den korrelierten morphologischen Veränderungen in Richtung größerer Drüsen, Geschlechtsdimorphismus und normal großen Augen entwickelt hatte, gab es keine Rückkehr zum ursprünglichen Zustand.

Die Assoziation zwischen großen Augen und der Strategie der Ressourcenverteidigung könnte das Ergebnis sexueller Selektion innerhalb des Geschlechts sein, bei der die großen Augen den Männchen ermöglichen, eindringende Männchen rasch zu erkennen und zu verjagen. Ohne diese Möglichkeit auszuschließen ist es ebenfalls möglich, dass große Augen durch sexuelle Selektion zwischen den Geschlechtern entstanden, wenn die Männchen, die Weibchen rasch erkennen, einen Selektionsvorteil haben. Die Assoziation zwischen großen mesosomalen Drüsen und der Verteidigung von ressourcenfreien Territorien ist wahrscheinlich ein Resultat von zwischengeschlechtlicher sexueller Selektion, da Männchen mit großen Drüsen Weibchen über größere Entfernungen anlocken können. Wir nehmen weiter an, dass der Färbungsdimorphismus zwischen Männchen und Weibchen das Resultat einer natürlichen Selektion auf kryptische Färbung der Männchen ist.

Korrelierte Evolution Molekulare Phylogenie Paarung Sexuelle Selektion Xylocopa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcock J., Barrows E.M., Gordon G., Hubbard L.J., Kirkendale L., Pyle D.W., Ponder T.L., Zalom K.G. (1978) The ecology and evolution of male reproductive behaviour in the bees and wasps, J. Linn. Soc. Lond. Zool. 64, 293–326.CrossRefGoogle Scholar
  2. Alcock J., Johnson M.D. (1990) Female choice in the carpenter bee Xylocopa varipuncta (Hymenoptera: Anthophoridae), J. Zool., Lond. 221, 195–204.CrossRefGoogle Scholar
  3. Alcock J., Smith A.P. (1987) Hilltopping, leks and female choice in the carpenter bee Xylocopa (Neoxylocopa) varipuncta, J. Zool., Lond. 211, 1–10.CrossRefGoogle Scholar
  4. Andersson M.B. (1994) Sexual selection, Princeton Univ. Press, New Jersey.Google Scholar
  5. Björklund M. (1990) A phylogenetic interpretation of sexual dimorphism in body size and ornament in relation to mating system in birds, J. Evol. Biol. 3, 171–183.CrossRefGoogle Scholar
  6. Bleiweiss R. (1997) Covariation of sexual dichromatism and plumage colors in lekking and nonlekking birds — A comparative analysis, Evol. Ecol. 11, 217–235.CrossRefGoogle Scholar
  7. Bradbury J.W. (1981) The evolution of leks, in: Alexander R.D., Tinkle D.W. (Eds.), Natural Selection and Social Behavior: Recent Research and New Theory, Chiron Press, New York, pp. 138–169.Google Scholar
  8. Brown W.D., Crespi B.J., Choe J.C. (1997) Sexual conflict and the evolution of mating systems, in: Choe J.C., Crespi B.J. (Eds.), Mating systems in insects and arachnids. Cambridge Univ. Press, Cambridge, pp. 352–377.CrossRefGoogle Scholar
  9. Darwin C. (1871) The descent of man and selection in relation to sex, John Murray, London.CrossRefGoogle Scholar
  10. Eickwort G.C., Ginsberg H.S. (1980) Foraging and mating behaviour in Apoidea, Annu. Rev. Entomol. 25, 421–446.CrossRefGoogle Scholar
  11. Emlen S.T., Oring L.W. (1977) Ecology, sexual selection, and the evolution of animal mating systems, Science 197, 215–223.PubMedCrossRefGoogle Scholar
  12. Frankie G.W., Vinson S.B., Lewis A. (1979) Territorial behaviour in male Xylocopa micans (Hymenoptera: Anthophoridae), J. Kans. Entomol. Soc. 52, 313–323.Google Scholar
  13. Gerling D., Hurd Jr. P.D., Hefetz A. (1983) Comparative behavioral biology of two Middle East species of carpenter bees (Xylocopa Latreille) (Hymenoptera: Apoidea), Smithson. Contrib. Zool. 369, 1–33.Google Scholar
  14. Gerling D., Velthuis H.H.W., Hefetz A. (1989) Bionomics of the large carpenter bees of the genus Xylocopa, Annu. Rev. Entomol. 34, 163–190.CrossRefGoogle Scholar
  15. Hardy I.C.W., Mayhew P.J. (1998) Sex ratio, sexual dimorphism and mating structure in bethylid wasp,. Behav. Ecol. Sociobiol 42, 383–395.CrossRefGoogle Scholar
  16. Hefetz A. (1983) Function of secretion of mandibular gland of males in territorial behavior of Xylocopa sulcatipes (Hymenoptera: Anthophoridae), J. Chem. Ecol. 9, 923–931.CrossRefGoogle Scholar
  17. Höglund J. (1989) Size and plumage dimorphism in lek-breeding birds: a comparative analysis, Am. Nat. 134, 72–87.CrossRefGoogle Scholar
  18. Höglund J., Sillén-Tullberg B. (1994) Does lekking promote the evolution of male biased size dimorphism in birds? On the use of comparative approaches, Am. Nat. 144, 881–889.CrossRefGoogle Scholar
  19. Huelsenbeck J.P., Ronquist F. (2001) MRBAYES: Bayesian inference of phylogeny, Bioinformatics 17, 754–755.PubMedCrossRefGoogle Scholar
  20. Hurd P. Jr., Moure J.S. (1963) A classification of the large carpenter bees (Xylocopini) (Hymenoptera: Apoidea), Univ. California Publ. Entomol. 29, 1–365.Google Scholar
  21. Hurd Jr. P.D. (1955) The carpenter bees of California (Hymenoptera: Apoidea), Bull Calif. Insect Survey 4, 35–72.Google Scholar
  22. Ims R.A. (1988) The potential for sexual selection in males: Effect of sex ratio and spatio-temporal distribution of receptive females, Evol. Ecol. 4, 57–61.CrossRefGoogle Scholar
  23. Johnson K.P., Lanyon S.M. (2000) Evolutionary changes in color patches of blackbirds are associated with marsh nesting, Behav. Ecol. 11, 515–519.CrossRefGoogle Scholar
  24. Kruger O. (2005) The evolution of reversed sexual size dimorphism in hawks, falcons and owls: A comparative study, Evol. Ecol. 19, 467–486.CrossRefGoogle Scholar
  25. Kruger O., Davies N.B., Sorensen M.D. (2007) The evolution of sexual dimorphism in parasitic cuckoos: sexual selection of coevolution? Proc. R. Soc. B 274, 1553–1560.PubMedCrossRefGoogle Scholar
  26. Leys R. (2000a) A revision of the Australian carpenter bees, genus Xylocopa Latreille, subgenera Koptortosoma Gribodo and Lestis Lepeletier and Serville (Hymenoptera Apidae), Invertebr. Taxon. 14, 115–136.CrossRefGoogle Scholar
  27. Leys R. (2000b) Mate locating strategies of the green carpenter bees Xylocopa (Lestis) aeratus, and X. (L.) bombylans, J. Zool. Lond. 252, 453–462.CrossRefGoogle Scholar
  28. Leys R., Cooper S.J.B., Schwarz M.P. (2002) Molecular phylogeny and historical biogeography of the large carpenter bees, genus Xylocopa (Hymenoptera: Apidae), Biol. J. Linn. Soc. 77, 249–266.CrossRefGoogle Scholar
  29. Markow T.A. (2002) Female remating, operational sex ratio, and the arena of sexual selection in Drosophila, Evolution 56, 1725–1734.PubMedGoogle Scholar
  30. McAuslane H.J., Vinson S.B., Williams H.J. (1990) Change in mandibular and mesosomal gland contents of male Xylocopa micans (Hymenoptera: Anthophoridae), J. Chem. Ecol. 16, 1877–1885.CrossRefGoogle Scholar
  31. Michener C.D. (1990) Castes in Xylocopine bees, in: W. Engels (Ed.), Social insects, an evolutionary approach to castes and reproduction, Berlin Springer Verlag, pp. 123–146.Google Scholar
  32. Minckley R.L. (1994) Comparative morphology of the mesosomal ‘gland’ in large carpenter bees (Apidae: Xylocopini), Zool. J. Linn. Soc. 53, 291–308.Google Scholar
  33. Minckley R.L., Buchmann S.L., Wcislo W.T. (1991) Bioassay evidence for a sex attractant pheromone in the large carpenter bee Xylocopa varipuncta (Hymenoptera: Anthophoridae), J. Zool. Lond. 224, 285–291.CrossRefGoogle Scholar
  34. Oakes E.J. (1992) Lekking and the evolution of sexual dimorphism in birds: comparative approaches, Am. Nat. 140, 665–694.PubMedCrossRefGoogle Scholar
  35. Osten T. (1989) Vergleichend-funktionsmorphologische Untersuchungen des Paarungsverhalten von Platynopoda and Mesotrichia (Hymenoptera: Xylocopini), Stuttgarter Beitr. Naturkd. Ser. A 433, 1–18.Google Scholar
  36. Pagel M., Meade A. (2006) Bayesian analysis of correlated evolution of discrete characters by reversible jump markov chain monte carlo, Am. Nat. 167, 808–825.CrossRefGoogle Scholar
  37. Payne R.B. (1984) Sexual selection, lek and arena behavior, and sexual size dimorphism in birds, Ornithol. Monogr. 33, 1–53.Google Scholar
  38. Posada D., Crandall K.A. (1998) Modeltest: testing the model of DNA substitution, Bioinformatics 14, 817–818.PubMedCrossRefGoogle Scholar
  39. Rambaut A., Drummond A. (2005) TRACER version 1.3: MCMC Trace File Analyser Program distributed by the authors at http:// evolve.zoo.ox.ac.uk/software.html (accessed on 25 October 2007).Google Scholar
  40. Rodríguez F., Oliver J.F., Marín A., Medina J.R. (1990) The general stochastic model of nucleotide substitutions, J. Theor. Biol. 142, 485–501.PubMedCrossRefGoogle Scholar
  41. Stark R.E. (1990) Untersuchungen zur Brutbiologie und zum Sozialverhalten der Großen Holzbiene Xylocopa sulcatipes Maa. Dissertation, Albert-Ludwigs-Universität Freiburg.Google Scholar
  42. Stuart-Fox D., Moussalli A. (2007) Sex-specific ecomorphological variation and the evolution of sexual dimorphism in dwarf chameleons (Bradypodion spp.), J. Evol. Biol. 20, 1073–1081.PubMedCrossRefGoogle Scholar
  43. Temeles E.J., Pan I.L., Brennan J.L., Horwitt J.N. (2000) Evidence for Ecological Causation of Sexual Dimorphism in a Hummingbird, Science 289, 441–443.PubMedCrossRefGoogle Scholar
  44. Velthuis H.H.W., Camargo J.M.F. (1975a) Observations on male territories in a carpenter bee Xylocopa (Neoxylocopa) hirsutissima Maidl (Hymenoptera: Anthophoridae), Z. Tierpsychol. 38, 409–418.CrossRefGoogle Scholar
  45. Velthuis H.H.W., Camargo J.M.F. (1975b) Further observations on the function of male territories in the carpenter bee Xylocopa (Neoxylocopa) hirsutissima Maidl (Anthophoridae, Hymenoptera), Neth. J. Zool. 25, 516–528.CrossRefGoogle Scholar
  46. Velthuis H.H.W., Gerling D. (1980) Observations on territoriality and mating behaviour of the carpenter bee Xylocopa sulcatipes, Entomol. Exp. Appl. 28, 82–91.CrossRefGoogle Scholar
  47. Westneat D.F., Sherman P.W., Morton M.L. (1990) The ecology and evolution of extra-pair copulations, Curr. Ornithol. 7, 331–369.Google Scholar
  48. Yang Z. (1996) Among-site rate variation and its impact on phylogenetic analyses, Trends Ecol. Evol. 11, 367–372.PubMedCrossRefGoogle Scholar

References

  1. Alcock J. (1991) Mate-locating behaviour of Xylocopa californica arizonensis Cresson (Hymenoptera: Anthophoridae), J. Kans. Entomol. Soc. 64, 349–356.Google Scholar
  2. Alcock J. (1993) Differences in site fidelity among territorial males of the carpenter bee Xylocopa varipuncta (Hymenoptera: Anthophoridae), Behaviour 125, 199–217.CrossRefGoogle Scholar
  3. Alcock J., Smith A.P. (1987) Hilltopping, leks and female choice in the carpenter bee Xylocopa (Neoxylocopa) varipuncta, J. Zool., Lond. 211, 1–10.CrossRefGoogle Scholar
  4. Andersen J.F., Buchmann S.L., Weisleider D., Plattner R.D., Minckley R.M. (1988) Identification of thoracic gland constituents from male Xylocopa spp. Latreille (Hymenoptera: Anthophoridae) from Arizona, J. Chem. Ecol. 14, 1153–1162.CrossRefGoogle Scholar
  5. Anzenberger G. (1977) Ethological study of African carpenter bees of the genus Xylocopa (Hymenoptera, Anthophoridae), Z. Tierpsychol. 44, 337–374.PubMedCrossRefGoogle Scholar
  6. Balduf W.V. (1962) Life of the carpenter bee, Xylocopa virginica (Linn) (Xylocopidae, Hymenoptera), Ann. Entomol. Soc. Am. 55, 263–271.Google Scholar
  7. Barrows E.M. (1983) Male territoriality in the carpenter bee Xylocopa virginica virginica, Anim. Behav. 31, 806–813.CrossRefGoogle Scholar
  8. Bennet F.D. (1966) Observations on the behaviour of males of the West Indian carpenter bees, Xylocopa mordax Smith, on Nevis Island (Hymenoptera: Apidae), Pan-Pac. Entomol. 42, 246.Google Scholar
  9. Cruden R.W. (1966) Observations on the behavior of Xylocopa c. californica and X. tabaniformis orpifex, Pan-Pac. Entomol. 42, 111–119.Google Scholar
  10. Ducke A. (1901) Beobachtungen über Blütenbesuch, Erscheinungszeit der bei Pará vorkommender Bienen, Z. Syst. Hym. u. Dipt. 1, 49–67.Google Scholar
  11. Frankie G.W., Vinson S.B., Lewis A. (1979) Territorial behaviour in male Xylocopa micans (Hymenoptera: Anthophoridae), J. Kans. Entomol. Soc. 52, 313–323.Google Scholar
  12. Gerling D., Hermann H.R. (1978) Biology and mating behaviour of Xylocopa virginica L. (Hymenoptera, Anthophoridae), Behav. Ecol. Sociobiol. 3, 99–111.CrossRefGoogle Scholar
  13. Gerling D., Hurd Jr. P.D., Hefetz A. (1983) Comparative behavioral biology of two Middle East species of carpenter bees (Xylocopa Latreille) (Hymenoptera: Apoidea), Smithson. Contrib. Zool. 369, 1–33.Google Scholar
  14. Houston T.F. (1974) Notes on the behaviour of an Australian carpenter bee, genus Xylocopa Latr. (Hymneoptera: Xylocopinae), Aust. Entomol. Mag. 2, 36–38.Google Scholar
  15. Hurd Jr. P., Moure J.S. (1963) A classification of the large carpenter bees (Xylocopini) (Hymenoptera: Apoidea), Univ. Calif. Publ. Entomol. 29, 1–365.Google Scholar
  16. Hurd Jr. P.D. (1958) Observations on the nesting habits of some new world carpenter bees with remarks on their importance in the problem of species formation (Hymenoptera: Apoidea), Ann. Entomol. Soc. Am. 51, 365–375.Google Scholar
  17. Janzen D.H. (1964) Notes on the behavior of four subspecies of the carpenter bee Xylocopa (Notoxylocopa) tabaniformis, in Mexico, Ann. Entomol. Soc. Am. 57, 296–301.Google Scholar
  18. Janzen D.H. (1966) Notes on the behavior of the carpenter bee Xylocopa fimbriata in Mexico (Hymenoptera: Apoidea), J. Kans. Entomol. Soc. 39, 633–641.Google Scholar
  19. Leys R. (2000b) Mate locating strategies of the green carpenter bees Xylocopa (Lestis) aeratus, and X. (L.) bombylans, J. Zool. Lond. 252, 453–462.CrossRefGoogle Scholar
  20. Lieftinck M.A. (1955) The carpenter bees (Xylocopa Latr.) of the Lesser Sunda Islands and Tanimbar, Verhand. Naturforsch. Ges. Basel 66, 5–32.Google Scholar
  21. Lieftinck M.A. (1956) Revision of the carpenter bees (Xylocopa Latr.) of the Moluccan islands, with notes on other Indo-Australian species, Tijdschr. Entomol. 99, 55–73.Google Scholar
  22. Lieftinck, M.A. (1957) Revision of the carpenter-bees (Xylocopa Latr., subgenus Maiella Michener) of the Papuan region (Hymenoptera, Apoidea), Nova Guin. (ns) 8, 325–376.Google Scholar
  23. Linsley E.G. (1965) Notes on male territorial behavior in the Galápagos carpenter bee (Hymenoptera: Apidae), Pan-Pac. Entomol. 41, 158–161.Google Scholar
  24. Linsley E.G. (1976) Defensive behavior of males about plants not visited by their females (Hymenoptera, Apoidea), Pan-Pac. Entomol. 52, 177–178.Google Scholar
  25. Malyshev S.J. (1931) Lebensgeschichte der Holzbienen, Xylocopa Latr. (Apoidea), Z. Morphol. u. Ökol. der Tiere 23, 754–809.CrossRefGoogle Scholar
  26. Marshall L.D., Alcock J. (1981) The evolution of the mating system of the Carpenter bee Xylocopa varipuncta (Hymenoptera: Anthophoridae), J. Zool., Lond. 193, 315–324.CrossRefGoogle Scholar
  27. Minckley R.L. (1994) Comparative morphology of the mesosomal ‘gland’ in large carpenter bees (Apidae: Xylocopini), Zool. J. Linn. Soc. 53, 291–308.Google Scholar
  28. O’Brien L.B., O’Brien C.W. (1966) Observations on territoriality and the new nesting substrate of Xylocopa californica arizonensis Cresson, Pan-Pac. Entomol. 42, 27–29.Google Scholar
  29. Osten T. (1989) Vergleichend-funktionsmorphologische Untersuchungen des Paarungsverhaltens von Platynopoda and Mesotrichia (Hymenoptera: Xylocopini), Stuttgarter Beitr. Naturkd. Ser. A 433, 1–18.Google Scholar
  30. Rau P. (1933) The jungle bees and wasps of Barro Colorado Island (with notes on other insects), Privately printed, Kirkwood, Mo, pp. 1–324.Google Scholar
  31. Sabrosky C.W. (1962) Mating in Xylocopa virginica (Hymenoptera: Apidae), Proc. Entomol. Soc. Wash. 64, 184.Google Scholar
  32. Sage R.D. (1968) Observations on feeding, nesting and territorial behaviour of carpenter bees genus Xylocopa in Costa Rica, Ann. Entomol. Soc. Am. 61, 884–889.Google Scholar
  33. Scholz E. (1988) Artenspektrum, Verbreitung, Bionomie und Paarungsbiologie von Holzbienen (Apoidea: Xylocopinae) in Río Grande do Sul, Südbrasilien. Diplomarbeit, Eberhard-Karls-Universität Tübingen.Google Scholar
  34. Stark R.E. (1990) Untersuchungen zur Brutbiologie und zum Sozialverhalten der Großen Holzbiene Xylocopa sulcatipes Maa. Dissertation, Albert-Ludwigs-Universität Freiburg.Google Scholar
  35. Velthuis H.H.W., Camargo J.M.F. (1975a) Observations on male territories in a carpenter bee Xylocopa (Neoxylocopa) hirsutissima Maidl (Hymenoptera: Anthophoridae), Z. Tierpsychol. 38, 409–418.CrossRefGoogle Scholar
  36. Velthuis H.H.W., Camargo J.M.F. (1975b) Further observations on the function of male territories in the carpenter bee Xylocopa (Neoxylocopa) hirsutissima Maidl (Anthophoridae, Hymenoptera), Neth. J.Zool. 25, 516–528.CrossRefGoogle Scholar
  37. Velthuis H.H.W., Gerling D. (1980) Observations on territoriality and mating behaviour of the carpenter bee Xylocopa sulcatipes, Entomol. Exp. Appl. 28, 82–91.CrossRefGoogle Scholar
  38. Vicidomini S. (1998) Biology of Xylocopa (Xylocopa) violacea (L., 1758) (Hymenoptera: Apidae): Copulatory behavior. Atti Mus. Civ. Orn. Sc. At. Varenna 3, 16–33.Google Scholar
  39. Vinson S.B., Frankie G.W. (1990) Territorial and mating behaviour of Xylocopa fimbriata F. and Xylocopa gualanensis Cockerell from Costa Rica, J. Insect Behav. 3, 13–31.CrossRefGoogle Scholar
  40. Watmough R.H. (1974) Biology and behaviour of carpenter bees in southern Africa, J. Entomol. Soc. S. Afr. 37, 261–281.Google Scholar
  41. Williams H.J., Vinson S.B., Frankie G.W. (1987) Chemical content of the dorsal mesosomal gland of two Xylocopa species (Hymenoptera: Anthophoridae) from Costa Rica, Comp. Biochem. Physiol. 86B, 311.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2008

Authors and Affiliations

  1. 1.Evolutionary Biology Unit SouthAustralian MuseumAdelaideAustralia
  2. 2.School of Earth and Environmental SciencesUniversity of AdelaideAustralia
  3. 3.School of Agriculture, Food and WineThe University of AdelaideAdelaideAustralia

Personalised recommendations