Advertisement

Apidologie

, Volume 38, Issue 5, pp 453–461 | Cite as

Alkane composition variations between darker and lighter colored comb beeswax

  • Dvory NamdarEmail author
  • Ronny Neumann
  • Yossi Sladezki
  • Nizar Haddad
  • Steve Weiner
Original Article

Abstract

Beeswax is composed of fatty acids, odd numbered n-alkanes and wax esters. Focusing on the most stable components of beeswax, namely the n-alkanes, we have found by gas chromatography and gas chromatography-mass spectrometry analyses of combs from twelve colonies from Israel and Jordan that as beeswax ages and darkens its n-alkane composition changes. The amount of even numbered n-alkanes (C22– C32) is significantly higher in darker colored beeswax as compared to light colored beeswax. We attribute this in part to the accumulation of cuticular residues found in the darker colored comb cells. Cuticular residues are known to contain C23–C32 odd and even numbered n-alkanes.

beeswax color n-alkane cuticle GC-MS 

Variations de la composition en alkanes entre la cire d’abeilles de rayons de coloration foncée et celle de coloration plus claire

Apis mellifera cire d’abeille couleur n-alkane cuticule chromatographie phase gazeuse spectrométrie de masse 

Unterschiede in der Zusammensetzung von Kohlenwasserstoffen auf Waben mit dunklem und hellem Bienenwachs

Zusammenfassung

Die Hauptbestandteile von Bienenwachs sind fettlösliche Substanzen wie Fettsäuren, langkettige Alkohole, geradzahlige n-Alkane und Wachsester (Tulloch, 1970; Aichholz and Lorbeer, 2000). Wir untersuchten die Zusammensetzung der n-Alkane in unterschiedlich gefärbtem Bienenwachs. Die Farbveränderungen der Wabe sind von der Brutaktivität abhängig und die dunkle Farbe soll durch eine Anhäufung von Resten der Nymphenhäutchen verursacht werden (Jay, 1963, Hepburn and Kurstjens, 1988; Hepburn et al., 1991; Berry and Delaplane, 2001). Gaschromatographie (GC) und GC—Massenspektrometrie wurden für die Analysen eingesetzt (Evershed et al., 1997; Regert et al., 2001). Wie bestätigten, dass helles Bienenwachs vor allem ungeradzahlige Alkane enthält. Überraschenderweise stellten wir fest, dass das dunkle Bienenwachs zusätzlich zu den ungeraden Alkanen durchschnittlich drei Mal mehr geradzahlige Alkane enthält (Abb. 3 und 4). Die Quelle für die geradzahligen Alkane im dunkleren Bienenwachs sind sehr wahrscheinlich die Wachse auf der Bienenkutikula, die sich im Bereich des Brutnestes anreichern. Es ist bekannt, dass diese Kutikulawachse sowohl geradzahlige als auch ungeradzahlige Alkane enthalten (Salvy et al., 2001). Dieser neue Befund zeigt, dass unterschiedliche Aktivitäten der Bienen innerhalb des Bienenvolkes Auswirkungen auf die Zusammensetzung des Bienenwachses haben (Hepburn and Kurstjens, 1988; Berry and Delaplane, 2001).

Bienenwachs Farbe n-Alkane Kutikula GC-MS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aichholz R., Lorbeer E. (2000) Investigation of combwax of honeybees with high-temperature gas chromatography and high-temperature gas chromatography chemical ionization mass spectrometry. II:High temperature gas chromatography chemical ionization mass spectrometry, J. Chromatogr. A 883, 75–88.PubMedCrossRefGoogle Scholar
  2. Asperger A., Engewald W., Fabian G. (1999) Analytical characterization of natural waxes employing pyrolysis-Gas Chromatography-Mass Spectrometry, J. Anal. Appl. Pyrolysis 50, 103–115.CrossRefGoogle Scholar
  3. Berry J.A., Delaplane K.S. (2001) Effects of comb age on honey bee colony growth and brood survivorship, J. Apic. Res. 40, 3–8.Google Scholar
  4. Blomquist G.J., Jackson L.L. (1973) Incorporation of labelled dietary n-alkanes into cuticular lipids of the grasshopper, malenoplus sanguinipes, J. Insect Physiol. 19, 1639–1647.CrossRefGoogle Scholar
  5. DeGrandi-Hoffman G., Roth S.A., Loper G.L., Erickson Jr. E.H. (1989) BEEPOP: A honeybee population dynamics simulation mode, Ecol. Model. 45, 133–150.CrossRefGoogle Scholar
  6. Evershed R.P., Vaughan S.J., Dudd S.N., Soles J.S. (1997) Fuel for thought? Beeswax in lamps and conical cups from Late Minoan Crete, Antiquity 71, 980–985.Google Scholar
  7. Haddad N.J., Fuchs S. (2004) Honeybee agrobiodiversity: a project in conservation of Apis mellifera syriaca in Jordan, Uludag Bee J. 3, 116–120.Google Scholar
  8. Hepburn H.R., Kurstjens S.P. (1988) The combs of honey bees as composite materials, Apidologie 19, 25–36.CrossRefGoogle Scholar
  9. Hepburn H.R., Bernard R.T.F., Davidson B.C., Muller W.J., Lloyd P., Kurstjens S.P., Vincent S.L. (1991) Synthesis and secretion of beeswax in honeybees, Apidologie 22, 21–36.CrossRefGoogle Scholar
  10. Heron C., Nemcek N., Bonfield K.M., Dixon D., Ottaway B.S. (1994) The chemistry of Neolithic beeswax, Naturwissenschaften 81, 266–269.CrossRefGoogle Scholar
  11. Jay C.S. (1963) The development of honeybees in their cells, J. Apic. Res. 2, 117–134.Google Scholar
  12. Jimenez J.J., Bernal J.L., Aumente S., Toribio L., Bernal J. (2003) Quality assurance of commercial beeswax. Part II. Gas chromatography electrom impact ionization mass spectrometry of alcohols and acids, J. Chromatogr. A 1007, 101–116.PubMedCrossRefGoogle Scholar
  13. Jimenez J.J., Bernal J.L., Aumente S., del Nozal M.J., Martin M.T., Bernal J. (2004) Quality assurance of commercial beeswax. Part I. Gas chromatography electrom impact ionization mass spectrometry of hydrocarbons and monoesters, J. Chromatogr. A 1024, 147–154.PubMedCrossRefGoogle Scholar
  14. Lockey K.H. (1988) Lipids of the insect cuticle: Origin, composition and function, Comp. Biochem. Physiol. 89 B, 595–645.Google Scholar
  15. MacLellan A.R. (1978) Growth and decline of honeybee colonies and interrelationships of adult bees, brood, honey and pollen, J. Appl. Ecol. 15, 155–157.CrossRefGoogle Scholar
  16. Mills J.S., White R. (1994) The Organic Chemistry of Museum Objects, Butterworth-Heinemann, London.Google Scholar
  17. Regert M., Colinart S., Degrand L., Decavallas O. (2001) Chemical alteration and use of beeswax through time: Accelerated ageing tests and analysis of archaeological samples from various environmental contexts, Archaeometry 43, 549–569.CrossRefGoogle Scholar
  18. Salvy M., Martin C., Bagneres A.G., Provost E., Roux M., Le Conte Y., Clement J.L. (2001) Modifications of the cuticular hydrocarbon profile of Apis Mellifera worker bee in the presence of the ectoparasitic mite Varroa jacobsoni in brood cells, Parasitology 122, 145–159.PubMedCrossRefGoogle Scholar
  19. Tulloch A.P. (1970) The composition of beeswax and other waxes secreted by insects, Lipids 5, 247–258.CrossRefGoogle Scholar
  20. Tulloch A.P. (1971) Beeswax: structure of the esters and their component hydroxy acids and diols, Chem. Phys. Lipids 6, 235–265.CrossRefGoogle Scholar
  21. Tulloch A.P. (1980) Beeswax — Composition and Analysis, Bee World 61, 47–62.Google Scholar
  22. Tulloch A.P., Hoffman L.L. (1972) Canadian beeswax: analytical values and composition of hydrocarbons, free acids and long chain esters, J. Am. Oil Chem. Soc. 49, 696–699.CrossRefGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2007

Authors and Affiliations

  • Dvory Namdar
    • 1
    • 2
    Email author
  • Ronny Neumann
    • 3
  • Yossi Sladezki
    • 4
  • Nizar Haddad
    • 5
  • Steve Weiner
    • 1
    • 6
  1. 1.Kimmel Center of Archaeological SciencesWeizmann Institute of ScienceRehovotIsrael
  2. 2.Department of Archaeology and Ancient Near Eastern CulturesTel Aviv UniversityRamat AvivIsrael
  3. 3.Department of Organic ChemistryWeizmann Institute of ScienceRehovotIsrael
  4. 4.Honeybee DepartmentMinistry of AgricultureBeit DaganIsrael
  5. 5.Bee Research UnitNational Center for Agricultural Research and Technology TransferBaqa’Jordan
  6. 6.Department of Structural BiologyWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations