Both geometric morphometric and microsatellite data consistently support the differentiation of the Apis mellifera M evolutionary branch

Abstract

Traditional morphometrics, allozymes, and mitochondrial data have supported a close relationship between the M branch subspecies A. m. iberiensis and the North African subspecies (A branch). However, studies using nuclear DNA markers have revealed a clear distinction between the latter and the two European M branch subspecies. In help resolve this paradox, we analyzed 663 colonies from six European and African subspecies. A geometric morphometrics approach was applied to the analysis of wing shape, and the results were compared with data of six microsatellite loci. Both data sets were found to be highly consistent and corroborated a marked divergence of West European subspecies from North African ones. This supports the hypothesis that the presence of the African lineage mitotype in Iberian honey bee populations is likely the consequence of secondary introductions, with a minimal African influence within the current Iberian genetic background. Wing geometric morphometrics appears more appropriate than mitochondrial DNA analysis or traditional morphometrics in the screening and identification of the Africanization process.

This is a preview of subscription content, log in to check access.

References

  1. Adams D.C., Rohlf F.J., Slice D.E. (2004) Geometric morphometrics: ten years of progress following the revolution, Ital. J. Zool. 71, 5–16.

    Article  Google Scholar 

  2. Arias M.C., Sheppard W.S. (1996) Molecular phylogenetics of honey bee subespecies (Apis mellifera), Mol. Phylogenet. Evol. 5, 557–566.

    PubMed  Article  CAS  Google Scholar 

  3. Arias M.C., Rinderer T.E., Sheppard W.S. (2006) Further characterization of honey bees from the Iberian Peninsula by allozyme, morphometric and mtDNA haplotype analyses, J. Apic. Res. 45, 188–196.

    Article  CAS  Google Scholar 

  4. Baylac M., Daufresne T. (1996) Wing venation variability in Monarthropalpus buxi (Diptera, Cecidomyiidae) and the quaternary coevolution of box (Buxus sempervirens L.) and its midge: A GeometricalMorphometric Analysis, in: Advances in Morphometrics, NATO-ASI Series A, Plenum Press, pp. 285–301.

  5. Baylac M., Friess M. (2005) Fourier descriptors, Procrustes superimposition, and data dimensionality: an example of cranial shape analysis in modern human populations, in: Slice D.E. (Ed.), Modern Morphometrics in Physical Anthropology, Kluwer, pp. 145–165.

  6. Baylac M., Penin X. (1998) Wing static allometry in Drosophila simulans males (Diptera, Drosophilidae) and its relationships with developmental compartments, Acta Zool. 44, 97–112.

    Google Scholar 

  7. Baylac M., Garnery L., Tharavy D., Pedraza-Acosta J., Rortais A., Arnold G. (2008) ApiClass, an automatic wing morphometric expert system for honeybee identification, [online] http://apiclass.mnhn.fr.

  8. Baylac M., Villemant C., Simbolotti G. (2003) Combining Geometric Morphometrics with Pattern Recognition for the investigation of Species Complexes, Biol. J. Linn. Soc. 80, 89–98.

    Article  Google Scholar 

  9. Bonnet E., Van de Peer Y. (2002) ZT: a software tool for simple and partialMantel tests, J. S. S. 7, 1–12.

    Google Scholar 

  10. Bookstein F. (1991) Morphometric tools for landmark data: geometry and biology, Cambridge University Press, Cambridge.

    Google Scholar 

  11. Bookstein F.L., Chernoff B., Elder R.L., Humphries J.M., Smith G.R., Strauss R.E. (1985) Morphometrics in evolutionary biology: the geometry of size and shape change, with examples from fishes, Academy of Natural Sciences of Philadelphia, No. 15.

  12. Canovas F., De la Rua P., Serrano J., Galian J. (2007) Geographical patterns of mitochondrial DNA variation in Apis mellifera iberiensis (Hymenoptera: Apidae), J. Zool. Syst. Evol. Res. 46, 24–30.

    Google Scholar 

  13. Cornuet J.M., Fresnaye J. (1989) Etude biométrique de colonies d’abeilles d’Espagne et du Portugal, Apidologie 20, 93–101.

    Article  Google Scholar 

  14. Darroch J.N., Mosimann J.E. (1985) Canonical and principal components of shape, Biometrika 72, 241–252.

    Article  Google Scholar 

  15. Diniz-Filho J.A., Fuchs S., Arias M.C. (1999) Phylogeographical autocorrelation of phenotypic evolution in honey bees (Apis mellifera L.), Heredity 83, 671–680.

    PubMed  Article  Google Scholar 

  16. Dryden I.L., Mardia K.V. (1998) Statistical shape analysis, John Wiley & Sons.

  17. Estoup A., Garnery L., Solignac M., Cornuet J.M. (1995) Microsatellite variation in honey bee (Apis mellifera) populations:hierarchical genetic structure and test of infinitemodels, Genetics 140, 679–695.

    PubMed  CAS  Google Scholar 

  18. Evin A., Baylac M., Ruedi M., Mucceda M., Pons J.P. (2008) Taxonomy, skull diversity and evolution in a species complex of Myotis (Chiroptera: Vespertilionidae): a geometric morphometric appraisal, Biol. J. Linn. Soc. 95, 529–538.

    Article  Google Scholar 

  19. Franck P., Garnery L., Solignac M., Cornuet J.M. (1998) The origin of west European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data, Evolution 52, 1119–1134.

    Article  CAS  Google Scholar 

  20. Franck P., Garnery L., Solignac M., Cornuet J.M. (2000) Molecular confirmation of a fourth lineage in honeybees from Near East, Apidologie 31, 167–180.

    Article  CAS  Google Scholar 

  21. Franck P., Garnery L., Loiseau A., Oldfroyd B.P., Hepburn H.R., Solignac M., Cornuet J.M. (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data, Heredity 86, 420–430.

    PubMed  Article  CAS  Google Scholar 

  22. Francoy T.M., Prado P.R.R., Gonçalves L.S., da Fontoura Costa L., De Jong D. (2006) Morphometric differences in a single wing cell can discriminate Apis mellifera racial types, Apidologie 37, 91–97.

    Article  Google Scholar 

  23. Francoy T.M., Wittmann D., Drauschke M., Müller S., Steinhage V., Bezerra-Laure M.A.F., De Jong D., Concalves, L.S. (2008) Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures, Apidologie 39, 488–494.

    Article  Google Scholar 

  24. Francoy T.M., Wittmann D., Steinhage V., Drauschke M., Müller M., Cunha D.R., Nascimento A.M., Figueiredo V.L.C., Simoes Z.L.P., De Jong D., Arias M.C., Gonçalves L.S. (2009) Morphometric and genetic changes in a population of Apis mellifera after 34 years of Africanization, Genet. Mol. Res. 8, 709–717.

    PubMed  Article  CAS  Google Scholar 

  25. Garnery L., Cornuet J.M., Solignac M. (1992) Evolutionary history of the honey bee (Apis mellifera L.) inferred from mitochondrial DNA analysis, Mol. Ecol. 1, 145–154.

    PubMed  Article  CAS  Google Scholar 

  26. Garnery L., Franck P., Baudry E., Vautrin D., Cornuet J.M., Solignac M. (1998a) Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica). I. Mitochondrial DNA, Genet. Sel. Evol. 30, S31–S47.

    Article  CAS  Google Scholar 

  27. Garnery L., Franck P., Baudry E., Vautrin D., Cornuet J.M., Solignac M. (1998b) Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica). II. Microsatellite loci, Genet. Sel. Evol. 30, S49–S74.

    Article  CAS  Google Scholar 

  28. Garnery L., Mosshine E.H., Oldroyd B.P., Cornuet J.M. (1995) Mitochondrial DNA variation in Moroccan and Spanish honey bee populations, Mol. Ecol. 4, 465–471.

    Article  CAS  Google Scholar 

  29. Gould S.J. (1966) Allometry and size in ontogeny and phylogeny, Biol. Rev. 41, 587–640.

    PubMed  Article  CAS  Google Scholar 

  30. Hamon L.J., Gibson, R. (2006) Multivariate phenotypic evolution among island and mainland populations of the ornate day gecko, Phelsuma ornata, Evolution 60, 2622–2632.

    Google Scholar 

  31. Hepburn H.R., Radlof S.E. (1996) Morphometric and pheromonal analysis of Apis mellifera L. along a transect from the Sahara to the Pyrenees, Apidologie 27, 35–45.

    Article  CAS  Google Scholar 

  32. Hepburn H.R., Radloff S.E. (1998) Honeybee of Africa, Springer, Berlin.

    Google Scholar 

  33. Klingenberg C.P., Badyaev A.V., Sowry S.M., Beckwith N.J. (2001) Inferring developmental modularity from morphological integration: Analysis of individual variation and asymmetry in bumblebee wings, Am. Nat. 157, 11–23.

    PubMed  Article  CAS  Google Scholar 

  34. Langella O. (2002) Populations, 1.2.28, Copyright (C) 1999, CNRS UPR9034.

  35. Lobo J.A., Krieger H. (1992) Maximum likelihood estimates of gene frequencies and racial admixture in Apis mellifera L. (Africanized honeybees), Heredity 68, 441–448.

    Google Scholar 

  36. Mahalanobis P.C. (1936) On the generalized distance in statistics, Proc. Acad. Natl. Sci. 12, 49–55.

    Google Scholar 

  37. Marroig G., Cheverud J. (2004) Cranial evolution in sakis (Pithecia, Platyrrhini) I: Interspecific differentiation and allometric patterns, Am. J. Phys. Anthropol. 125, 266–278.

    PubMed  Article  Google Scholar 

  38. Mattu V.K., Verma L.R. (1983) Comparative morphometric studies on the Indian honeybee of the North-west Himalaya 1. Tongue and Antenna, J. Apic. Res. 22, 79–85.

    Google Scholar 

  39. Meixner M., Ruttner F., Koeniger N., Koeniger G. (1989) The mountain bees of the Kilimanjaro region and their relation to neighboring bee populations, Apidologie 20, 165–174.

    Article  Google Scholar 

  40. Meixner M., Sheppard W.S., Dietz A., Krell R. (1994) Morphological and allozyme variability in honey bees from Kenya, Apidologie 25, 188–202.

    Article  Google Scholar 

  41. Miguel I., Iriondo M., Garnery L., Sheppard W.S., Estonba A. (2007) Gene flow within the M evolutionary lineage of Apis mellifera: role of the Pyrenees, isolation by distance and post glacial re-colonization routes in the western Europe, Apidologie 38, 141–155.

    Article  CAS  Google Scholar 

  42. Monteiro L.R. (1999) Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape, Syst. Biol. 48, 192–199.

    PubMed  Article  CAS  Google Scholar 

  43. Monteiro, L.R., Bordin B., DosReis S.F. (2000) Shape distances, shape spaces and the comparison of morphometric methods, TREE 15, 217–220.

    PubMed  Google Scholar 

  44. Monteiro L.R., Diniz-Filho J.A.F. dos Reis S.F., Araújo E. (2002) Geometric Estimates of Heritability in Biological Shape, Evolution 56, 563–572.

    PubMed  Google Scholar 

  45. Mosimann J.E., James F.C. (1979) New statistical methods for allometry with application to Florida red-winged blackbirds, Evolution 33, 444–459.

    Article  Google Scholar 

  46. Neff N.A., Smith G.R. (1979) Multivariate Analysis of Hybrid Fishes, Syst. Zool. 28, 176–196.

    Article  Google Scholar 

  47. Nei M., Tajima F., Tateno Y. (1983) Accuracy of estimated phylogenetic trees from molecular data, J. Mol. Evol. 19, 153–170.

    PubMed  Article  CAS  Google Scholar 

  48. Piry S., Alapetite A., Cornuet, J.M., Paetkau D., Baudouin L., Estoup A. (2004) GeneClass2: A Software for Genetic Assignment and First-Generation Migrant Detection, J. Hered. 95, 536–539.

    PubMed  Article  CAS  Google Scholar 

  49. Pretorius E. (2005) Using geometric morphometrics to investigate wing dimorphism in males and females of Hymenoptera — a case study based on the genus Tachyphex Kohl (Hymenoptra: Sphecidae: Larrinae), Aust. J. Entomol. 44, 113–121.

    Article  Google Scholar 

  50. Rannala B., Mountain J.L. (1997) Detecting immigration by using multilocus genotypes, Proc. Natl. Acad. Sci. 94, 9197–9221.

    PubMed  Article  CAS  Google Scholar 

  51. Ripley B.D. (1996) Pattern recognition and neural networks, Cambridge University Press, Cambridge, G.B.

    Google Scholar 

  52. Roberts W.C. (1961) Heterosis in the Honey bee as shown by morphological characters in inbred and hybrid bees, Ann. Entomol. Soc. Am. 54, 878–882.

    Google Scholar 

  53. Rohlf F.J. (1999) Shape Statistics: Procrustes superimposition and tangent spaces, J. Classif. 16, 197–223.

    Article  Google Scholar 

  54. Rohlf F.J., Slice D. (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks, Syst. Zool. 39, 40–59.

    Article  Google Scholar 

  55. Ruttner F. (1988) Biogeography and taxonomy of honeybees, Springer Verlag, Berlin.

    Google Scholar 

  56. Ruttner F., Tassencourt L., Louveaux J. (1978) Biometrical-statistical analysis of the geographic variability of Apis mellifera L., Apidologie 9, 363–381.

    Article  Google Scholar 

  57. Ruttner F., Pour-Elmi M., Fuchs S. (2000) Ecoclines in the Near East along 36°N latitude in Apis mellifera L., Apidologie 31, 157–166.

    Article  Google Scholar 

  58. Sheppard W.S., Arias M.C., Grech A., Meixner M.D. (1997) Apis mellifera ruttneri, a new honey bee subspecies from Malta, Apidologie 28, 287–293.

    Article  Google Scholar 

  59. Smith D.R., Crespi B.J., Bookstein F.L. (1997) Fluctuating asymmetry in the honey bee, Apis mellifera: effect of ploidy and hybridization, J. Evol. Biol. 10, 551–574.

    Article  Google Scholar 

  60. Smith D.R, Glenn T.C. (1995) Allozyme polymorphisms in Spanish honeybees (Apis mellifera iberica), J. Hered. 86, 12–16.

    PubMed  CAS  Google Scholar 

  61. Smith D.R., Palopoli M.F., Taylor B.R., Garnery L., Cornuet J.M., Solignac M., Brown W.M. (1991) Geographical overlap of two mitochondrial genomes in Spanish honeybees (Apis mellifera iberica), J. Hered. 82, 96–100.

    PubMed  CAS  Google Scholar 

  62. Sprent P. (1972) The mathematics of size and shape, Biometrics 28, 23–27.

    PubMed  Article  CAS  Google Scholar 

  63. Tofilski A. (2008) Using geometric morphometrics and standard morphometrics to discriminate three honeybee subspecies, Apidologie 39, 558–563.

    Article  Google Scholar 

  64. Updegraff G. (1990) MeasurementTV, version 1.3. Data Crunch 304 avenue Adobe, Dan Clemente, CA 92672, USA.

    Google Scholar 

  65. Whitfield C.W., Behura S.K., Berlocher S.H., Clark A.G., Johnston J.S., Sheppard W.S., Smith D.R., Suarez A.V., Weaver D., Tsutsui N.D. (2006) Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera, Science 27, 642–645.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Irati Miguel.

Additional information

Manuscript editor: Marina Meixner

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miguel, I., Baylac, M., Iriondo, M. et al. Both geometric morphometric and microsatellite data consistently support the differentiation of the Apis mellifera M evolutionary branch. Apidologie 42, 150–161 (2011). https://doi.org/10.1051/apido/2010048

Download citation

Keywords

  • honeybee
  • evolutionary branch
  • wing morphology
  • geometric morphometrics
  • microsatellite