Skip to main content

Advertisement

Log in

Does spatial population structure affect seed set in pollen-limited Thymus capitatus?

  • Original Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Plant population size has been shown to affect insect visitation and reproductive success. Small populations are at risk because individuals are more likely to be affected by stochastic processes and inbreeding depression (Allee effect). Additionally, several studies have found that plants in small populations also experience lower pollinator visitation rates, which may further decrease reproduction. In this study, seed set, pollinator visitation and pollen limitation of Thymus capitatus (L.) was assessed in 32 patches in eight populations of various sizes on the island of Lesvos, Greece. All populations except one were significantly pollen-limited. We found that although free-pollinated flowers produced more seeds in larger populations this was not due to higher pollinator visitation rates as flowers which received pollen supplements also produced more seeds in larger populations. We hypothesize that the higher seed set is due to a generally greater genetic variability or better habitat quality. We show that honeybee visitation alone significantly decreases pollen limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ågren J. (1996) Population Size, pollinator limitation, and seed set in the self-incompatible herb Lythrum Salicaria, Ecol. Lett. 77, 1779–1790.

    Google Scholar 

  • Amarasekare P. (2004) Spatial dynamics of mutualistic interactions, J. Anim. Ecol. 73, 128–142.

    Article  Google Scholar 

  • Blamey M., Grey-Wilson C. (2004) Wild Flowers of the Mediterranean, A & C Black, London.

    Google Scholar 

  • Brys R., Jacquemyn H., De Bruyn L., Hermy M. (2007) Pollination success and reproductive output in experimental populations of the self-incompatible Primula vulgaris, Int. J. Plant Sci. 168, 571–578.

    Article  Google Scholar 

  • Brys R., Jacquemyn H., Endels P., Hermy M., De Blust G. (2003) The relationship between reproductive success and demographic structure in remnant populations of Primula veris, Acta Oecol. 24, 247–253.

    Article  Google Scholar 

  • Campbell D., Halama J. (1993) Resource and pollen limitation to lifetime seed production in a natural plant population, Ecology 74, 1043–1051.

    Article  Google Scholar 

  • Conner J.K., Neumeier R. (1995) Effects of black mustard population size on the taxonomic composition of pollinators, Oecologia 104, 218–224.

    Article  Google Scholar 

  • Fox L.R. (2007) Climatic and biotic stochasticity: disparate causes of convergent demographies in rare, sympatric plants, Conserv. Biol. 21, 1556–1561.

    PubMed  Google Scholar 

  • Ghazoul J. (2005) Pollen and seed dispersal among dispersed plants, Biol. Rev. 80, 413–443.

    Article  PubMed  Google Scholar 

  • Henle K., Lindenmayer D.B., Margules C.R., Saunders D.A., Wissel C. (2004) Species survival in fragmented landscapes: where are we now? Biodivers. Conserv. 13, 1–8.

    Article  Google Scholar 

  • Iwaizumi M.G., Sakai S. (2004) Variation in flower biomass among nearby populations of Impatiens textori (Balsaminaceae): effects of population plant densities, Can. J. Bot. 82, 563–572.

    Article  Google Scholar 

  • Jennersten O., Nilsson S.G. (1993) Insect flower visitation frequency and seed production in relation to patch size of Viscaria vulgaris (Caryophyllaceae), Oïkos 68, 283–292.

    Google Scholar 

  • Klein A.M., Steffan-Dewenter I., Tscharntke T. (2003a) Fruit set of highland coffee increases with the diversity of pollinating bees, Proc. R. Soc. Lond. B Biol. Sci. 270, 955–961.

    Article  Google Scholar 

  • Klein A.M., Steffan-Dewenter I., Tscharntke T. (2003b) Pollination of Coffea canephora in relation to local and regional agroforestry management, J. Appl. Ecol. 40, 837–845.

    Article  Google Scholar 

  • Klinkhamer P.G.L., van der Lugt P.-P. (2004) Pollinator service only depends on nectar production rates in sparse populations, Oecologia 140, 491–494.

    Article  PubMed  Google Scholar 

  • Leimu R., Mutikainen P., Koricheva J., Fischer M. (2006) How general are positive relationships between plant population size, fitness and genetic variation? J. Ecol. 94, 942–952.

    Article  Google Scholar 

  • Michener C.D. (2000) The Bees of the World, Johns Hopkins University Press, Baltimore, USA.

    Google Scholar 

  • Mustajärvi K., Siikamaki P., Rytkonen S., Lammi A. (2001) Consequences of plant population size and density for plant-pollinator interactions and plant performance, J. Ecol. 89, 80–87.

    Article  Google Scholar 

  • Paschke M., Abs C., Schmid B. (2002) Relationship between population size, allozyme variation, and plant performance in the narrow endemic Cochlearia bavarica, Conserv. Genet. 3, 131–144.

    Article  CAS  Google Scholar 

  • Petanidou T., Smets E. (1995) The potential of marginal lands for apiculture: nectar secretion in Mediterranean shrublands, Apidologie 26, 39–52.

    Article  Google Scholar 

  • Petanidou T., Smets E. (1996) Does temperature stress induce nectar production in Mediterranean plants? New Phytol. 133, 513–518.

    Article  Google Scholar 

  • Petanidou T., Vokou D. (1993) Pollination ecology of Labiatae in a phryganic (East Mediterranean) ecosystem, Am. J. Bot. 80, 892–899.

    Article  Google Scholar 

  • Rathcke B. (1983) Competition and facilitation among plants for pollination, Pollination Biol. 305–329.

  • Schemske D.W., Husband B.C., Ruckelshaus M.H., Goodwillie C., Parker I.M., Bishop J.G. (1994) Evaluating approaches to the conservation of rare and endangered plants, Ecology 75, 584–606.

    Article  Google Scholar 

  • Severns P. (2003) Inbreeding and small population size reduce seed set in a threatened and fragmented plant species, Lupinus sulphureus ssp. kincaidii (Fabaceae), Biol. Conserv. 110, 221–229.

    Article  Google Scholar 

  • Spira T.P. (2001) Plant-pollinator interactions: A threatened mutualism with implications for the ecology and management of rare plants, Nat. Areas J. 21, 78–88.

    Google Scholar 

  • Steffan-Dewenter I., Tscharntke T. (2000) Resource overlap and possible competition between honey bees and wild bees in central Europe, Oecologia 122, 288–296.

    Article  Google Scholar 

  • Vamosi J.C., Knight T.M., Steets J.A., Mazer S.J., Burd M., Ashman T.L. (2006) Pollination decays in biodiversity hotspots, Proc. Natl. Acad. Sci. USA 103, 956–961.

    Article  PubMed  CAS  Google Scholar 

  • Visscher P.K., Seeley T.D. (1982) Foraging strategy of honeybee colonies in a temperate deciduous forest, Ecology 63, 1790–1801.

    Article  Google Scholar 

  • Walther-Hellwig K., Fokul G., Frankl R., Buchler R., Ekschmitt K., Wolters V. (2006) Increased density of honeybee colonies affects foraging bumblebees, Apidologie 37, 517–532.

    Article  Google Scholar 

  • Westerkamp C. (1991) Honeybees are poor pollinators — why? Plant Syst. Evol. 177, 71–75.

    Article  Google Scholar 

  • Wolf A.T., Harrison S.P. (2001) Effects of habitat size and patch isolation on reproductive success of the serpentine morning glory, Conserv. Biol. 15, 111–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Tscheulin.

Additional information

Manuscript editor: Stan Schneider

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tscheulin, T., Petanidou, T. Does spatial population structure affect seed set in pollen-limited Thymus capitatus?. Apidologie 42, 67–77 (2011). https://doi.org/10.1051/apido/2010035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido/2010035

Keywords

Navigation