Apidologie

, Volume 42, Issue 1, pp 1–13 | Cite as

The physical, insemination, and reproductive quality of honey bee queens (Apis mellifera L.)

  • Deborah A. Delaney
  • Jennifer J. Keller
  • Joel R. Caren
  • David R. Tarpy
Open Access
Original Article

Abstract

Understanding the reproductive potential (“quality”) of queens bees can provide valuable insights into factors that influence colony phenotype. We assayed queens from various commercial sources for various measures of potential queen quality, including their physical characters (such as their degree of parasitism), insemination number (stored sperm counts), and effective paternity frequency (number of drone fathers among their offspring). We found significant variation in the physical, insemination, and mating quality of commercially produced queens, and we detected significant correlations within and among these various measures. Overall, the queens were sufficiently inseminated (3.99 ± 1.504 million sperm) and mated with an appropriate number of drones (effective paternity frequency: 16.0 ± 9.48). Importantly, very few of the queens were parasitized by tracheal mites and none were found with either Nosema species. These findings suggest possible mechanisms for assessing the potential fitness of honey bee queens without the need for destructive sampling.

Keywords

honey bee queens reproductive potential insemination parasitism effective mating frequency 

References

  1. Al-Lawati H., Kamp G., Bienefeld K. (2009) Characteristics of the spermathecal contents of old and young honeybee queens, J. Insect Physiol. 55, 116–121.PubMedCrossRefGoogle Scholar
  2. Avetisyan G.A. (1961) The relation between interior and exterior characteristics of the queen and fertility and productivity of the bee colony, XVIII International Beekeeping Congress, pp. 44–53.Google Scholar
  3. Burgett M., Kitprasert C. (1992) Tracheal mite infestation of queen honey-bees, J. Apic. Res. 31, 110–111.Google Scholar
  4. Camazine S., Çakmak I., Cramp K., Finley J., Fisher J., Frazier M., Rozo A. (1998) How healthy are commercially-produced US honey bee queens? Am. Bee J. 138, 677–680.Google Scholar
  5. Cantwell G.E. (1970) Standard methods for counting nosema spores, Am. Bee J. 119, 222–223.Google Scholar
  6. Chen Y.P., Pettis J.S., Collins A., Feldlaufer M.F. (2006) Prevalence and transmission of honeybee viruses, Appl. Environ. Microbiol. 72, 606–611.PubMedCrossRefGoogle Scholar
  7. Chen Y.P., Pettis J.S., Feldlaufer M.F. (2005) Detection of multiple viruses in queens of the honey bee Apis mellifera L, J. Invertebr. Pathol. 90, 118–121.PubMedCrossRefGoogle Scholar
  8. Chen Y.P., Zhao Y., Hammond J., Hsu H.T., Evans J., Feldlaufer M. (2004) Multiple virus infections in the honey bee and genome divergence of honey bee viruses, J. Invertebr. Pathol. 87, 84–93.PubMedCrossRefGoogle Scholar
  9. Cox-Foster D.L., Conlan S., Holmes E.C., Palacios G., Evans J.D., Moran N.A., Quan P.L., Briese T., Hornig M., Geiser D.M., Martinson V., van Engelsdorp D., Kalkstein A.L., Drysdale A., Hui J., Zhai J.H., Cui L.W., Hutchison S.K., Simons J.F., Egholm M., Pettis J.S., Lipkin W.I. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder, Science 318, 283–287.PubMedCrossRefGoogle Scholar
  10. Cremer S., Armitage S.A.O., Schmid-Hempel P. (2007) Social immunity, Curr. Biol. 17, R693–R702.PubMedCrossRefGoogle Scholar
  11. Crozier R.H., Pamilo P. (1996) Evolution of Social Insect Colonies: Sex Allocation and Kin Selection, Oxford University Press, New York.Google Scholar
  12. da Silva E.C.A., Silva R.M.B.D., Chaud-Netto J., Moreti A.C.C.C., Otsuk I.P. (1995) Influence of management and environmental factors on mating success of Africanized queen honey bees, J. Apic. Res. 34, 169–175.Google Scholar
  13. Dedej S., Hartfelder K., Aumeier P., Rosenkranz P., Engels W. (1998) Caste determination is a sequential process: effect of larval age at grafting on ovariole number, hind leg size and cephalic volatiles in the honey bee (Apis mellifera carnica), J. Apic. Res. 37, 183–190.Google Scholar
  14. Dodologlu A., Emsen B., Gene F. (2004) Comparison of some characteristics of queen honey bees (Apis mellifera L.) reared by using Doolittle method and natural queen cells, J. Appl. Anim. Res. 26, 113–115.Google Scholar
  15. Eckert J.E. (1934) Studies in the number of ovarioles in queen honeybees in relation to body size, J. Econ. Entomol. 27, 629–635.Google Scholar
  16. Engels W. (1974) Occurrence and significance of vitellogenins in female castes of social hymenoptera, Am. Zool. 14, 1229–1237.Google Scholar
  17. Estoup A., Garnery L., Solignac M., Cornuet J.-M. (1995) Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models, Genetics 140, 679–695.PubMedGoogle Scholar
  18. Evans J.D. (2001) Genetic evidence for coinfection of honey bees by acute bee paralysis and Kashmir bee viruses, J. Invertebr. Pathol. 78, 189–193.PubMedCrossRefGoogle Scholar
  19. Finley J., Camazine S., Frazier M. (1996) The epidemic of honey bee colony losses during the 1995–1996 season, Am. Bee J. 136, 805–808.Google Scholar
  20. Fischer F., Maul V. (1991) Untersuchungen zu aufzuchtbedingten königinnenmerkmalen, Apidologie 22, 444–446.Google Scholar
  21. Fuchs S., Schade V. (1994) Lower performance in honeybee colonies of uniform paternity, Apidologie 25, 155–168.CrossRefGoogle Scholar
  22. Furgala B. (1962) Effect of Intensity of nosema inoculum on queen supersedure in honey bee, Apis mellifera Linnaeus, J. Insect Pathol. 4, 429.Google Scholar
  23. Garnery L., Franck P., Baudry E., Vautrin D., Cornuet J.-M., Solignac M. (1998) Genetic diversity of the west European honey bee (Apis mellifera mellifera and A. m. iberica). II. Microsatellite loci, Genet. Sel. Evol. 30, S49–S74.CrossRefGoogle Scholar
  24. Gilley D.C., Tarpy D.R., Land B.B. (2003) The effect of queen quality on the interactions of workers and dueling queen honey bees (Apis mellifera L.), Behav. Ecol. Sociobiol. 55, 190–196.CrossRefGoogle Scholar
  25. Haarmann T., Spivak M., Weaver D., Weaver B., Glenn T. (2002) Effects of fluvalinate and coumaphos on queen honey bees (Hymenoptera: Apidae) in two commercial queen rearing operations, J. Econ. Entomol. 95, 28–35.PubMedCrossRefGoogle Scholar
  26. Haberl M., Tautz D. (1999) Paternity and maternity frequencies in Apis mellifera sicula, Insectes Soc. 46, 137–145.CrossRefGoogle Scholar
  27. Hamilton W.D. (1987) Kinship, recognition, disease, and intelligence: constraints of social evolution, in: Kikkawa J. (Ed.), Animal Societies: Theory and Facts, Japanese Scientific Society Press, Tokyo, pp. 81–102.Google Scholar
  28. Harbo J.R., Williams J.L. (1987) Effect of abovefreezing temperatures on temporary storage of honeybee spermatozoa, J. Apic. Res. 26, 53–55.Google Scholar
  29. Hatch S., Tarpy D.R., Fletcher D.J.C. (1999) Worker regulation of emergency queen rearing in honey bee colonies and the resultant variation in queen quality, Insectes Soc. 46, 372–377.CrossRefGoogle Scholar
  30. Hayworth M.K., Johnson N.G., Wilhelm M.E., Gove R.P., Metheny J.D., Rueppell O. (2009) Added weights lead to reduced flight behavior and mating success in polyandrous honey bee queens (Apis mellifera), Ethology 115, 698–706.CrossRefGoogle Scholar
  31. Higes M., Martin R., Meana A. (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe, J. Invertebr. Pathol. 92, 93–95.PubMedCrossRefGoogle Scholar
  32. Higes M., Martin-Hernandez R., Botias C., Bailon E.G., Gonzalez-Porto A.V., Barrios L., del Nozal M.J., Bernal J.L., Jimenez J.J., Palencia P.G., Meana A. (2008) How natural infection by Nosema ceranae causes honeybee colony collapse, Environ. Microbiol. 10, 2659–2669.PubMedCrossRefGoogle Scholar
  33. Jay S.C., Dixon D. (1984) Infertile and nosemainfected honeybees shipped to western Canada, J. Apic. Res. 23, 40–44.Google Scholar
  34. Jones J.C., Myerscough M.R., Graham S., Oldroyd B.P. (2004) Honey bee nest thermoregulation: diversity promotes stability, Science 305, 402–404.PubMedCrossRefGoogle Scholar
  35. Kahya Y., Gencer H.V., Woyke J. (2008) Weight at emergence of honey bee (Apis mellifera caucasica) queens and its effect on live weights at the pre and post mating periods, J. Apic. Res. 47, 118–125.Google Scholar
  36. Klee J., Tay W.T., Paxton R.J. (2006) Specific and sensitive detection of Nosema bombi (Microsporidia: Nosematidae) in bumble bees (Bombus spp.; Hymenoptera: Apidae) by PCR of partial rRNA gene sequences, J. Invertebr. Pathol. 91, 98–104.PubMedCrossRefGoogle Scholar
  37. Kocher S.D., Richard F.J., Tarpy D.R., Grozinger C.M. (2008) Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera), BMC Genomics 9, 32.CrossRefGoogle Scholar
  38. Kocher S.D., Tarpy D.R., Grozinger C.M. (2010) The effects of mating and instrumental insemination on honey bee flight behavior and gene expression, Insect Mol. Biol. 19, 153–162.PubMedCrossRefGoogle Scholar
  39. Koeniger N., Koeniger G. (2007) Mating flight duration of Apis mellifera queens: As short as possible, as long as necessary, Apidologie 38, 606–611.CrossRefGoogle Scholar
  40. Koeniger N., Koeniger G., Pechhacker H. (2005) The nearer the better? Drones (Apis mellifera) prefer nearer drone congregation areas, Insectes Soc. 52, 31–35.CrossRefGoogle Scholar
  41. Laidlaw H.H. Jr., Page R.E. Jr. (1997) Queen Rearing and Bee Breeding, Wicwas, Cheshire, CT.Google Scholar
  42. Lensky Y., Demter M. (1985) Mating flights of the queen honeybee (Apis mellifera) in a subtropical climate, Comp. Biochem. Physiol. 81, 229–241.CrossRefGoogle Scholar
  43. Lobo J.A., Kerr W.E. (1993) Estimation of the number of matings in Apis mellifera: Extensions of the model and comparison of different estimates, Ethol. Ecol. Evol. 5, 337–345.CrossRefGoogle Scholar
  44. Lodesani M., Balduzzi D., Galli A. (2004) A study on spermatozoa viability over time in honey bee (Apis mellifera ligustica) queen spermathecae, J. Apic. Res. 43, 27–28.Google Scholar
  45. Mackensen O. (1964) Relation of semen volume to success in artificial insemination of queen honey bees, J. Econ. Entomol. 57, 581–583.Google Scholar
  46. Mattila H.R., Seeley T.D. (2007) Genetic diversity in honey bee colonies enhances productivity and fitness, Science 317, 362–364.PubMedCrossRefGoogle Scholar
  47. Mattila H.R., Burke K.M., Seeley T.D. (2008) Genetic diversity within honeybee colonies increases signal production by waggle-dancing foragers, Proc. R. Soc. Lond. B 275, 809–816.CrossRefGoogle Scholar
  48. Moritz R.F.A., Fuchs S. (1998) Organization of honeybee colonies: characteristics and consequences of a superorganism concept, Apidologie 29, 7–21.CrossRefGoogle Scholar
  49. Nelson D.L., Gary N.E. (1983) Honey productivity of honey bee Apis-mellifera colonies in relation to body weight attractiveness and fecundity of the queen, J. Apic. Res. 22, 209–213.Google Scholar
  50. Oldroyd B.P., Rinderer T.E., Buco S.M. (1992) Intracolonial foraging specialism by honey bees (Apis mellifera) (Hymenoptera: Apidae), Behav. Ecol. Sociobiol. 30, 291–295.CrossRefGoogle Scholar
  51. Oldroyd B.P., Rinderer T.E., Schwenke J.R., Buco S.M. (1994) Subfamily recognition and task specialisation in honey bees (Apis mellifera L.) (Hymenoptera: Apidae), Behav. Ecol. Sociobiol. 34, 169–173.CrossRefGoogle Scholar
  52. Page R.E. Jr. (1980) The evolution of multiple mating behavior by honey bee queens (Apis mellifera), Genetics 96, 263–273.PubMedGoogle Scholar
  53. Page R.E. Jr., Robinson G.E., Fondrk M.K., Nasr M.E. (1995) Effects of worker genotypic diversity on honey bee colony development and behavior (Apis mellifera L.), Behav. Ecol. Sociobiol. 36, 387–396.CrossRefGoogle Scholar
  54. Palacios G., Hui J., Quan P.L., Kalkstein A., Honkavuori K.S., Bussetti A.V., Conlan S., Evans J., Chen Y.P., van Engelsdorp D., Efrat H., Pettis J., Cox-Foster D., Holmes E.C., Briese T., Lipkin W.I. (2008) Genetic analysis of Israel acute paralysis virus: distinct clusters are circulating in the United States, J. Virol. 82, 6209–6217.PubMedCrossRefGoogle Scholar
  55. Palmer K.A., Oldroyd B.P. (2000) Evolution of multiple mating in the genus Apis, Apidologie 31, 235–248.CrossRefGoogle Scholar
  56. Palmer K.A., Oldroyd B.P. (2003) Evidence for intra-colonial genetic variance in resistance to American foulbrood of honey bees (Apis mellifera): further support for the parasite/pathogen hypothesis for the evolution of polyandry, Nat.Wiss. 90, 265–268.CrossRefGoogle Scholar
  57. Pettis J.S., Collins A.M., Wilbanks R., Feldlaufer M.F. (2004) Effects of coumaphos on queen rearing in the honey bee, Apis mellifera, Apidologie 35, 605–610.CrossRefGoogle Scholar
  58. Ratnieks F.L.W. (1990) The evolution of polyandry by queens in social Hymenoptera: the significance of the timing of removal of diploid males, Behav. Ecol. Sociobiol. 26, 343–348.CrossRefGoogle Scholar
  59. Ruttner F. (1956) The mating of the honeybee, Bee World 37, 3–15.Google Scholar
  60. Schlüns H., Moritz R.F.A., Neumann P., Kryger P., Koeniger G. (2005) Multiple nuptial flights, sperm transfer and the evolution of extreme polyandry in honeybee queens, Anim. Behav. 70, 125–131.CrossRefGoogle Scholar
  61. Schlüns H., Schlüns E.A., van Praagh J., Moritz R.F.A. (2003) Sperm numbers in drone honeybees (Apis mellifera) depend on body size, Apidologie 34, 577–584.CrossRefGoogle Scholar
  62. Schmid-Hempel P. (1998) Parasites in Social Insects, Princeton University Press, Princeton, NJ.Google Scholar
  63. Seehuus S.C., Norberg K., Gimsa U., Krekling T., Amdam G.V. (2006) Reproductive protein protects functionally sterile honey bee workers from oxidative stress, Proc. Natl. Acad. Sci. USA 103, 962–967.PubMedCrossRefGoogle Scholar
  64. Seeley T.D., Tarpy D.R. (2007) Queen promiscuity lowers disease within honeybee colonies, Proc. R. Soc. Lond. B 274, 67–72.CrossRefGoogle Scholar
  65. Sherman P.W., Seeley T.D., Reeve H.K. (1988) Parasites, pathogens, and polyandry in social Hymenoptera, Am. Nat. 131, 602–610.CrossRefGoogle Scholar
  66. Shimanuki H., Knox D.A. (2000) Diagnosis of Honey Bee Diseases, US Department of Agriculture, Agriculture Handbook No. AH-690.Google Scholar
  67. Solignac M., Vautrin D., Loiseau A., Mougel F., Baudry E., Estoup A., Garnery L., Haberl M., Cornuet J.M. (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome, Mol. Ecol. Notes 3, 307–311.CrossRefGoogle Scholar
  68. Tanaka E.D., Hartfelder K. (2004) The initial stages of oogenesis and their relation to differential fertility in the honey bee (Apis mellifera) castes, Arth. Struct. Dev. 33, 431–442.CrossRefGoogle Scholar
  69. Tarpy D.R. (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth, Proc. R. Soc. Lond. B 270, 99–103.CrossRefGoogle Scholar
  70. Tarpy D.R., Nielsen D.I. (2002) Sampling error, effective paternity, and estimating the genetic structure of honey bee colonies (Hymenoptera: Apidae), Ann. Entomol. Soc. Am. 95, 513–528.CrossRefGoogle Scholar
  71. Tarpy D.R., Page R.E. Jr. (2000) No behavioral control over mating frequency in queen honey bees (Apis mellifera L.): implications for the evolution of extreme polyandry, Am. Nat. 155, 820–827.PubMedCrossRefGoogle Scholar
  72. Tarpy D.R., Page R.E. Jr. (2002) Sex determination and the evolution of polyandry in honey bees (Apis mellifera), Behav. Ecol. Sociobiol. 52, 143–150.CrossRefGoogle Scholar
  73. Tarpy D.R., Nielsen R., Nielsen D.I. (2004) A scientific note on the revised estimates of effective paternity frequency in Apis, Insectes Soc. 51, 203–204.CrossRefGoogle Scholar
  74. van Engelsdorp D., Hayes J., Underwood R.M., Pettis J. (2008) A Survey of honey bee colony losses in the US, fall 2007 to spring 2008, PLoS ONE 4, e6481.CrossRefGoogle Scholar
  75. Villa J.D., Danka R.G. (2005) Caste, sex and strain of honey bees (Apis mellifera) affect infestation with tracheal mites (Acarapis woodi), Exp. Appl. Acarol. 37, 157–164.PubMedCrossRefGoogle Scholar
  76. Walsh P.S., Metzger D.A., Higuchi R. (1991) Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material, BioTech. 10, 506–513.Google Scholar
  77. Wang J.L. (2004) Sibship reconstruction from genetic data with typing errors, Genetics 166, 1963–1979.PubMedCrossRefGoogle Scholar
  78. Weaver N. (1957) Effects of larval age on dimorphic differentiation of the female honey bee, Ann. Entomol. Soc. Am. 50, 283–294.Google Scholar
  79. Webster T.C., Pomper K.W., Hunt G., Thacker E.M., Jones S.C. (2004) Nosema apis infection inworker and queen Apis mellifera, Apidologie 35, 49–54.CrossRefGoogle Scholar
  80. Webster T.C., Thacker E.M., Pomper K., Lowe J., Hunt G. (2008) Nosema apis infection in honey bee (Apis mellifera) queens, J. Apic. Res. 47, 53–57.CrossRefGoogle Scholar
  81. Williams G.R., Shafer A.B.A., Rogers R.E.L., Shutler D., Stewart D.T. (2008) First detection of Nosema ceranae, a microsporidian parasite of European honey bees (Apis mellifera), in Canada and central USA, J. Invertebr. Pathol. 97, 189–192.PubMedCrossRefGoogle Scholar
  82. Wilson E.O. (1971) The Insect Societies, Harvard University Press, Cambridge.Google Scholar
  83. Wilson-Rich N., Spivak M., Fefferman N.H., Starks P.T. (2009) Genetic, individual, and group facilitation of disease resistance in insect societies, Annu. Rev. Entomol. 54, 405–423.PubMedCrossRefGoogle Scholar
  84. Winston M.L. (1987) The Biology of the Honey Bee, Harvard University Press, Cambridge.Google Scholar
  85. Woyke J. (1962) Natural and artificial insemination of queen honeybees, Bee World 43, 21–25.Google Scholar
  86. Woyke J. (1971) Correlations between the age at which honeybee brood was grafted, characteristics of the resultant queens, and results of insemination, J. Apic. Res. 10, 45–55.Google Scholar
  87. Woyke J. (1983) Dynamics of entry of spermatozoa into the spermatheca of instrumentally inseminated queen honeybees, J. Apic. Res. 22, 150–154.Google Scholar
  88. Yang X.L., Cox-Foster D.L. (2005) Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification, Proc. Natl. Acad. Sci. USA 102, 7470–7475.PubMedCrossRefGoogle Scholar

Copyright information

© INRA, DIB-AGIB and Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Deborah A. Delaney
    • 1
  • Jennifer J. Keller
    • 1
  • Joel R. Caren
    • 1
  • David R. Tarpy
    • 1
  1. 1.Department of EntomologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations