Skip to main content
Log in

Effects of age, season and genetics on semen and sperm production in Apis mellifera drones

  • Original Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Adult drone honey bees from 4 Australian breeding lines were reared under similar conditions and examined for semen and sperm production when 14, 21 and 35 days old, during spring, summer and autumn. Almost half (40.5%) of all drones examined did not release any semen when manually everted. For those that released semen, the average volume released per drone was 1.09 μL (range 0.72 (±0.04)−1.12 (±0.04) μL) and the average number of sperms in the semen per drone was 3.63 × 106 (range 1.88 (±0.14)−4.11 (±0.17) × 106). The release of semen was dependent on breeding line and age (P < 0.05), but not on the rearing season. The volume of semen released per drone was dependent on season, age, and breeding line (P < 0.05), while the concentration of sperm in the semen was dependent on season and breeding line (P < 0.05). Hence our data indicate that genetics underpins the maturation of drone honey bees as well as the volume of semen they release and the concentration of sperm in that semen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson D.L. (2004) Improving queen bee production, Publication No. 04/153, Rural Industries Research and Development Corporation, Canberra, Australia, 16 p.

    Google Scholar 

  • Bishop G.H. (1920a) Fertilization in the honeybee, I. The male sexual organs: their histological structure and physiological functioning, J. Exp. Zool. 31, 225–265.

    Google Scholar 

  • Bishop G.H. (1920b) Fertilization in the honeybee, II. Disposal of the sexual fluids in the organs of the female, J. Exp. Zool. 31, 267–286.

    Google Scholar 

  • Collins A.M., Donoghue A.M. (1999) Viability assessment of honey bee, Apis mellifera sperm using dual fluorescent staining, Theriogenology 51, 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  • Collins A.M., Pettis J.S. (2001) Effect of varroa infestation on semen quality, Am. Bee J. 141, 590–593.

    Google Scholar 

  • Fukuda H., Ohtani T. (1977) Survival and life span of drone honeybees, Res. Pop. Ecol. 19, 51–68.

    Article  Google Scholar 

  • Gilmour A.R., Gogel B.J., Cullis B.R., Thompson R. (2006) ASReml User Guide Release 2.0. VSN International Ltd., Hemel Hempstead, UK.

    Google Scholar 

  • Kerr W.E., Zucchi R., Nakakaira, J.T., Butolo J.E. (1962) Reproduction in social insects, J.N.Y. Entomol. Soc. 70, 265–270.

    Google Scholar 

  • Koeniger G., Koeniger N., Fabritius M. (1979) Some detailed observations of mating in the honeybee, Bee World 60, 53–57.

    Google Scholar 

  • Koeniger G., Koeniger N., Tingek S., Phiancharoen M. (2005) Variance in spermatozoa number among Apis dorsata drones and among Apis mellifera drones, Apidologie 36, 279–284.

    Article  Google Scholar 

  • Köhler F. (1955) Untersuchungen zum Problem der künstlichen Begattung der Bienenkönigin (Apis mellifica L.), Würzburg: Inaugral-Dissertation.

  • Page R.E. (1986) Sperm utilization in social insects, Annu. Rev. Entomol. 31, 297–320.

    Article  Google Scholar 

  • R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org.

    Google Scholar 

  • Rhodes J., Somerville. D. (2003) Introduction and early performance of queen bees — some factors affecting success, Publication No. 03/049, Rural Industries Research and Development Corporation, Canberra, Australia.

    Google Scholar 

  • Rinderer T.E. (1986) Bee genetics and breeding, Academic Press, Orlando, Florida, USA.

    Google Scholar 

  • Rinderer T.E., Guzman L.I., Lancaster V.A., Delatte G.T., Stelzer J.A. (1999) Varroa in the mating yard. 1. The effects of Varroa jacobsoni and Apistan® on drone honey bees, Am. Bee J. 139, 134–139.

    Google Scholar 

  • Ruttner F. (1956) The mating of the honeybee, Bee World 37, 3–15.

    Google Scholar 

  • Schlüns H., Schlüns E.A., van Praagh J., Moritz R.F.A. (2003) Sperm numbers in drone honey bees (Apis mellifera) depend on body size, Apidologie 34, 577–584.

    Article  Google Scholar 

  • Winston M. (1987) The biology of the honeybee, Harvard University Press, Cambridge, Massachusetts, London, England, 281 p.

    Google Scholar 

  • Witherell P.C (1972) Flight activity and natural mortality of normal and mutant drone honeybees, J. Apic. Res. 11, 65–75.

    Google Scholar 

  • Woyke J. (1960) Natural and artificial insemination of queen honey bees, Pszczel. Zesz. Nauk. 4, 183–275.

    Google Scholar 

  • Woyke J. (1964) Causes of repeated mating flights by queen honeybees, J. Apic. Res. 2, 17–24.

    Google Scholar 

  • Woyke J., Ruttner F. (1958) An anatomical study of the mating process in the honeybee, BeeWorld 39, 3–18.

    Google Scholar 

  • Zander E. (1916) Die Ausbildung des Geschlechtes bei der Honigbiene (Apis mellifera L.), Z. Angew. Entomol. 3, 1–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis L. Anderson.

Additional information

Manuscript editor: Klaus Hartfelder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhodes, J.W., Harden, S., Spooner-Hart, R. et al. Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie 42, 29–38 (2011). https://doi.org/10.1051/apido/2010026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido/2010026

Keyword

Navigation