Apidologie

, Volume 41, Issue 3, pp 375–392 | Cite as

Nosema ceranae in Europe: an emergent type C nosemosis

  • Mariano Higes
  • Raquel Martín-Hernández
  • Aranzazu Meana
Review Article

Abstract

In this review, relevant data is presented on an emerging disease of the 21th century in European countries, caused by Nosema ceranae. Within a few years after it was detected in Spain in 2005, the rest of European countries that had technical capacity to differentiate Nosema apis from N. ceranae reported its presence. In a similar way as the initial detection of Varroa in Europe, active scientific work is raising many questions due to the absence of clinical symptoms in infected colonies and a long incubation period of the pathogen. N. ceranae presents a different epidemiological pattern and pathology compared to N. apis. The disease caused by N. ceranae is now named nosemosis type C (COLOSS workshop, 2009) and is characterized by the ability to detect the disease-causing agent throughout the year. The continuous death of highly infected bees, mostly foragers, has a clear effect on colony population and productivity. Although there has been a huge effort in the last years to increase knowledge about this disease, significant research is still needed on epidemiology, pathology, prophyllaxis and treatment.

Nosema ceranae Nosema apis Apis mellifera nosemosis Europe 

Nosema ceranae en Europe : émergence d’une nosémose de type C

Nosema ceranae Nosema apis Apis mellifera nosémose Europe 

Nosema ceranae in Europa: eine neu auftretende Nosemose Typ C

Zusammenfassung

Im Jahr 2005 wurde sowohl aus Asien als auch aus Europa über Nachweise von Nosema ceranae in der Honigbiene berichtet. Bis dahin wurde angenommen, dass die Nosemose der Bienen durch eine Infektion der Ventrikelzellen von erwachsenen Bienen mit Nosema apis verursacht wird. Allerdings weicht die durch N. ceranae verursachte, neu auftretende Krankheit in ihrer Epidemiologie, sowie ihrer Symptomatik und Pathologie ab. Daher ist es erforderlich, zwei verschiedene klinische Verläufe zu differenzieren: Nosemose Typ A, verursacht durch N. apis, und Nosemose Typ C, verursacht durch N. ceranae.

Die Infektion der Bienen geschieht durch das Aufnehmen von reifen Sporen. Der Lebenszyklus von N. ceranae wird in weniger als 3 Tagen komplett durchlaufen; die intrazelluläre Keimung der Sporen wurde beobachtet. N. ceranae kann während des ganzen Jahres in Bienen nachgewiesen werden, die Übertragungsmechanismen sind jedoch noch nicht vollständig aufgeklärt. Sowohl Königinnen als auch Arbeiterinnen können sich mit N. ceranae infizieren. Pollen aus Pollenhöschen, von Bienenfressern ausgewürgte Pellets, sowie Imkereigeräte wurden als Reservoir von infektiösen Sporen beschrieben. Experimentelle Infektionen von A. mellifera mit N. ceranae zeigten eine höhere Pathogenität in diesem Wirt, die im Vergleich zu N. apis eine höhere Sterblichkeit zur Folge hatte. Jedoch wurden von anderen Autoren Unterschiede in den Sterblichkeitsraten beschrieben, möglicherweise beeinflussen bisher noch unbekannte Faktoren die Ergebnisse. Infizierte Arbeiterinnen wiesen eine deutliche Degeneration der Epithelzellen des Ventrikulums auf, wobei in histologischen Schnitten aus anderen Geweben keine Anzeichen einer Infektion mit Sporen gefunden wurden. N. ceranae kann die humoralen und zellulären Abwehrmechanismen der Bienen teilweise unterdrücken, was bei Infektionen mit N. apis nicht der Fall ist.

Es wurde nachgewisen, dass die Postulate von Koch sowohl für Völker als auch für Einzelbienen gelten. Die Parasitierung einzelner Bienen durch N. ceranae hat einen deutlichen Effekt auf der Volksebene, was zu einem kontinuierlichen Totenfall hochinfizierter Bienen führt. Die lange und symptomfreie Inkubationszeit auf der Volksebene kann die Abwesenheit von sichtbaren Symptomen vor dem Zusammenbruch des Volkes erklären. Der Erreger wurde auch als Schlüsselfaktor für die Völkerverluste in Berufsimkereien in Spanien diskutiert. Es gibt jedoch einander widersprechende Berichte über die Folgen einer Infektion von Völkern mit N. ceranae aus verschiedenen Teilen Europas.

Der Nachweis von N. ceranae erfordert den Einsatz von molekularbiologischen Methoden. Das Antibiotikum Fumagillin wirkt gegen beide Arten von Nosema, obwohl sein Einsatz in der Europäischen Union verboten ist. Einige neue potenzielle Bekämpfungsmittel sind Thymol und Resveratrol, sowie ApiHerb oder Nonosz®. Eine gute imkerliche Praxis ist entscheidend für die Vermeidung und Kontrolle dieser Krankheit.

Es fehlt noch an Wissen über die epidemiologischen Faktoren und klinischen Symptome in verschiedenen Regionen Europas und anderer Teile der Welt, wo unterschiedliche klimatische Bedingungen herrschen und verschiedene Formen der Imkerei ausgeübt werden. Zukünftige Studien über die Nosemose Typ C werden zweifellos ihre Rolle bei Völkerzusammenbrüchen aufklären und werden den Wissensstand über viele noch unbekannte Faktoren im Zusammenhang mit dieser neuen Krankheit verbessern.

Nosema ceranae Nosema apis Apis mellifera Nosemose Europa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adl S.M., Simpson A.G.B., Farmer M.A., Andersen R.A., Anderson O.R., Barta J.R., Bowser S.S., Brugerolle G., Fensome R.A., Fredericq S., James T.Y., Karpov S., Kugrens P., Krug J., Lane C.E., Lewis L.A., Lodge J., Lynn D.H., Mann D.G., McCourt R.M., Mendoza L., Moestrup O., Mozley-Standridge S.E., Nerad T.A., Shearer C.A., Smirnov A.V., Spiegel F.W., Taylor M.F.J.R. (2005) The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists, J. Eukar. Microbiol. 52, 399–451.Google Scholar
  2. Amdam G.V., Omholt W. (2003) The hive bee to forager transition in honeybee colonies: the double repressor hypothesis, J. Theor. Biol. 223, 451–464.PubMedGoogle Scholar
  3. Amdam G.V., Simoes Z.L.P., Guidugli K.R., Noraberg K., Omholt S.W. (2003) Disruption of vitellogenin gene function in adult honeybees by intra-abdominal infection of double-stranded RNA, BMC Biotech. 3, 1–8.Google Scholar
  4. Anderson D.L., Trueman J.W.H. (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species, Exp. Appl. Acarol. 24, 165–189.PubMedGoogle Scholar
  5. Antúnez K., Martín-Hernández R., Prieto L., Meana A., Zunino P., Higes M. (2009) Immune-suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia), Environ. Microbiol. 11, 2284–2290.PubMedGoogle Scholar
  6. Avilez J.P., Araneda X. (2007) Hatching stimulation in bees (Apis mellifera), Arch. Zootec. 56, 885–893.Google Scholar
  7. Bailey L. (1953) The treatment of Nosema disease with fumagillin, Bee World 34, 136–137.Google Scholar
  8. Bailey L. (1954) The control of Nosema disease, Bee World 35, 111–113.Google Scholar
  9. Bailey L. (1955) The epidemiology and control of Nosema disease of the honeybee, Ann. Appl. Biol. 43, 379–389.Google Scholar
  10. Becnel J., Andreadis T. (1999) The Microsporidia and Microsporidiosis, Wittner and Weiss (Eds.), Washington DC, ASM press.Google Scholar
  11. Békési L., Szalai Mátray E., Harka L., Hegedus D., Albert A. (2009) Medication possibilities against new age-nosemosis, Proc. Workshop “Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/news/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  12. Botías C., Martín-Hernández R., Meana A., Higes M. (2009a) Nosema spp. Infection in Spain: Consequences in colony productivity and vitality, Workshop “Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/news/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  13. Botías C., Martín-Hernández R., Garrido-Bailón E., Higes M., Anderson D.L. (2009b) Nosema ceranae is able to infect different Apis species, Proc. 41st Congress Apimondia Montepellier, p. 161.Google Scholar
  14. Bourgeois A.L., Rinderer T.E., Beaman L.D., Danka R.G. (2010) Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee, J. Invertebr. Pathol. 103, 53–58.PubMedGoogle Scholar
  15. Brooks D., Hoberg E.P. (2007) How will global climate change affect parasites? Trends Parasitol. 23, 571–574.PubMedGoogle Scholar
  16. Bush A.O., Fernandez J.C., Esch G.W., Seed J.R. (2001) Parasitism: The Diversity and Ecology of Animal Parasites, Cambridge University Press, Cambridge.Google Scholar
  17. Canning E.U., Lom J. (1986) The Microsporidia of vertebrates, Academic Press, New York.Google Scholar
  18. Cantwell G.E., Shimanuki H. (1970) The use of heat to control Nosema and increase production for the commercial beekeeper, Am. Bee J. 110, 263.Google Scholar
  19. Charriére J.D. (2009) Colony losses in Switzerland : newest results, 5th COLOSS Meet. Montpellier, http://www.coloss.org/documents/Vth_Coloss_Conference_Proceedings.pdf/ (accessed on 20 Nov. 2009).Google Scholar
  20. Chauzat M.P., Higes M., Martín-Hernández R., Meana A., Cougoule N., Faucon J.P. (2007) Presence of Nosema ceranae in French honey bee colonies, J. Apic. Res. 46, 127–128.Google Scholar
  21. Chauzat M.P., Ribière-Chabert M., Villier A., Schurr F., Blanchard P., Bouveret C., Drajnudel P., Faucon J.P. (2009) Preliminary results on cage experimentations of adult honey bees fed with spores of N. ceranae. Workshop Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/news/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  22. Chen Y., Evans J., Feldlaufer M. (2006) Horizontal and vertical transmission of viruses in the honey bee, Apis mellifera, J. Invertebr. Pathol. 92, 152–159.PubMedGoogle Scholar
  23. Chen Y.P., Evans J.D., Murphy C., Gutell R., Zuker M., Gundensen-Rindal D., Pettis J.S. (2009a) Morphological, molecular and phylogenetic characterization of Nosema ceranae, a Microsporidian parasite isolated from the European honey bee Apis mellifera, J. Eukar. Microbiol. 56, 142–147.Google Scholar
  24. Chen Y.P., Evans J.D., Smith J.B., Pettis J.S. (2008) Nosema ceranae is a long-present and widespread microsporidian infection of the European honeybee (Apis mellifera) in the United States, J. Invertebr. Pathol. 97, 186–188.PubMedGoogle Scholar
  25. Chen Y.P., Evans J.D., Zhou L., Boncristiani H., Kimura K., Xiao T., Litkowski A.M., Pettis J.S. (2009b) Asymmetrical coexistence of Nosema ceranae and Nosema apis in honey bees, J. Invertebr. Pathol. 101, 204–209.PubMedGoogle Scholar
  26. Chioveanu G., Ionescu D., Mardare A. (2004) Control of nosemosis-treatment with protofil, Apiacta 39, 31–38.Google Scholar
  27. Colin M.E., Tournaire M., Gauthier L. (2009) On the epidemiology of Nosema ceranae in France, in: Abstracts of 41st Congress Apimondia, 2009, Montpellier, France, p. 144.Google Scholar
  28. COLOSS workshop (2009) Conclusions, Proc. Workshop “Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/news/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  29. Cornejo L.G., Rosi C.O. (1975) Enfermedades de las abejas: su profilaxis y prevención, Ed. Hemisferio Sur. Buenos Aires.Google Scholar
  30. Cornman R.S., Chen Y.P., Schatz M.C., Street C., Zhao Y., Desany B., Egholm M., Hutchison S., Pettis J.S., Lipkin W.I., Evans J.D. (2009) Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees, PLoS Pathog 5, e1000466.PubMedGoogle Scholar
  31. Corona M., Velarde R., Remolina S., Moran-Lauter A., Wang Y., Hughes K.A., Robinson G.E. (2007) Vitellogenin, juvenile hormone, insulin signalling, and queen honey bee longevity, Proc. Natl. Acad. Sci. 104, 7128–7133.PubMedGoogle Scholar
  32. Costa C., Lodesani M., Maistrello L. (2009) New possibilities for control of intestinal parasite Nosema ceranae, Apoidea 6, 31–38.Google Scholar
  33. Cox-Foxter D.L., Conlan S., Holmes E.C., Palacios G., Evans J.D., Moran N.A., Quan P.L., Brise T., Horning M., Geiser D.M., Martinson V., VanEngelsdorp D., Kalkstein A.L., Drysdale A., Hui J., Zhai J., Cui L., Hutchinson S.K., Simons J.F., Egholm M., Pettis J.S., Lipkin W.I. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder, Science 318, 283–287.Google Scholar
  34. Cramp S. (1985) Handbook of the birds of Europe, the Middle East and North Africa, Vol. IV, Oxford University Press, Oxford, pp. 748–763.Google Scholar
  35. De la Rocque S., Rioux J.A., Slingenbergh J. (2008) Climate change: effects on animal disease systems and implications for surveillance and control, Rev. Sci. Tech. Off. Int. Epizoot. 27, 339–354.Google Scholar
  36. Derakhshifar I., Köglberger H., Oberlerchner J., Moosbeckhofer R. (2009) Incidence of Nosema spp. and colony performance in Austria 2006–2008, Proc. Workshop “Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/news/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  37. Didier E.S. (1997) Effects of albendazole, fumagillin and TNP-470 on microsporidial replication in vitro. Antim, Agents and Chemother. 41, 1541–1546.Google Scholar
  38. El-Shemy A.A.M., Pickard R.S. (1989) Nosema apis Zander infection levels in honeybees of known age, J. Apic. Res. 28, 101–106.Google Scholar
  39. Faucon J.P. (2005) La Nosémose, La Santé de l’Abeille 209, 344–368.Google Scholar
  40. Fenoy S., Rueda C., Higes M., Martín-Hernández R., Aguila C. (2009) High-level resistance of Nosema ceranae, a parasite of the honeybee, to temperature and desiccation, Appl. Environ. Microbiol. 75, 6886–6889.PubMedGoogle Scholar
  41. Franzen C., Muller, A. (2001) Microsporidiosis: human diseases and diagnosis, Microbes Infect. 3, 389–400.PubMedGoogle Scholar
  42. Fries I. (2009) Nosema ceranae in European honey bees (Apis mellifera), J. Invetebr. Pathol., in press.Google Scholar
  43. Fries I., Feng F., da Silva A., Slemenda S.B., Pieniazek N.J. (1996) Nosema ceranae sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae), Eur. J. Protistol. 32, 356–365.Google Scholar
  44. Fries I., Martín-Hernández R., Meana A., García-Palencia P., Higes M. (2006) Natural infections of Nosema ceranae in European honey bees. J. Apic. Res. 45, 230–233.Google Scholar
  45. Fry C.H. (1983) Honeybee predation by bee-eaters, with economic considerations, Bee World 64, 65–78.Google Scholar
  46. Gajda A. (2009) The size of bee sample for investigation of Nosema sp. infection level in honey bee colony, Proc. Workshop “Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/new s/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  47. Gajda A., Topolska G. (2009) Most probable causes of colony losses during the winter of 2008/2009 in Poland, 5th COLOSS Meet., Montpellier, http://www.coloss.org/documents/Vth_Coloss_Conference_Proceedings.pdf/ (accessed on 20 Nov. 2009).Google Scholar
  48. Galeotti P., Inglisa M. (2001) Estimating predation impact on honeybees Apis mellifera L. European bee-eaters Merops apiaster L., Revue d’Ecologie (La Terre et la Vie) 56, 373–388.Google Scholar
  49. Giacomelli A., Ferrari C., Milito M., Muscolini C., Ermenegildi A., Aquilini E., Formato G. (2009) Effectiveness in reducing the number of Nosema spores of Api Herb and Vita Feed Gold, Proc. Workshop “Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/news/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  50. Giersch T., Berg T., Galea F., Hornitzky M. (2009) Nosema ceranae infects honey bees (Apis mellifera) and contaminates honey in Australia, Apidologie 40, 117–123.Google Scholar
  51. Gilliam M., Prest D.B., Lorenz B.J. (1989) Microbiology of pollen and bee bread: taxonomy and enzymology of molds, Apidologie 20, 53–68.Google Scholar
  52. Gilliam M., Taber S. III, Lorenz B.J., Prest D.B. (1988) Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis, J. Invertebr. Pathol. 52, 314–325.Google Scholar
  53. Granato A., Caldon M., Falcaro C., Mutinelli F. (2009) Presence of Nosema apis and Nosema ceranae in Italian apiaries, Proc. Workshop “Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/news/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  54. Gómez A., Torres C., Orantes F.J. (2008) Colony losses: a double blind trial on the influence of supplementary protein nutrition and preventive treatment with fumagillin against Nosema ceranae, J. Apic. Res. 47, 84–86.Google Scholar
  55. Guidugli K.R., Nascimento A.M., Amdam G.V., Barchuk A.R., Omholt S.W. et al. (2005) Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect, FEBS Lett. 579, 4961–4965.PubMedGoogle Scholar
  56. Hartmann U., Charrière J.D., Lodesani M., Neumann P. (2009) To bee or not to bee: differential mortality induced by Nosema ceranae? Proc. Workshop “Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/news/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  57. Hassanein M.H. (1953) The influence of infection with Nosema apis on the activities and longevity of the worker honey bee, Ann. Appl. Biol. 40, 418–423.Google Scholar
  58. Henriques N. (2009) Diversity and recombination of rDNA in the microsporidian Nosema ceranae: how reliable is the genotyping? Proc. Workshop “Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/news/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  59. Higes M., García-Palencia P., Martín-Hernández R., Meana A. (2007) Experimental infection of Apis mellifera honeybees with the Microsporidia Nosema ceranae, J. Invertebr. Pathol. 94, 211–217.PubMedGoogle Scholar
  60. Higes M., Martín-Hernández R., Botías C., Garrido-Bailón E., González-Porto A.V., Barrios L., del Nozal M. et al. (2008a) How natural infection by Nosema ceranae causes honeybee colony collapse, Environ. Microbiol. 10, 2659–2669.PubMedGoogle Scholar
  61. Higes M., Martín-Hernández R., Garrido-Bailón E., Botías C., García-Palencia P., Meana A. (2008b) Regurgitated pellets of Merops apiaster as fomites of infective Nosema ceranae (Microsporidia) spores, Environ. Microbiol. 5, 1374–1379.Google Scholar
  62. Higes M., Martín-Hernández R., Garrido-Bailón E., García-Palencia P., Meana A. (2008c) Detection of infective Nosema ceranae (Microsporidia) spores in corbicular pollen of forager honey bees, J. Invertebr. Pathol. 97, 76–78.PubMedGoogle Scholar
  63. Higes M., Martín-Hernández R., Garrido-Bailón E., Botías C., Meana A. (2009a) First detection of Nosema ceranae (Microsporidia) in African Honey bees (Apis mellifera intermissa), J. Apic. Res. 48, 217–219.Google Scholar
  64. Higes M., Martín-Hernández R., Garrido-Bailón E., González-Porto A.V., García-Palencia P., Meana A., Del Nozal M.J., Mayo R., Bernal J.L. (2009b) Honeybee colony collapse due to Nosema ceranae in professional apiaries, Environ. Microbiol. Reports 1, 110–113.Google Scholar
  65. Higes M., Martín-Hernández R., García-Palencia P., Marín P., Meana A. (2009c) Horizontal transmission of Nosema ceranae (Microsporidia) from worker honey bees to queens (Apis mellifera). Environ. Microbiol. Reports 1, 495–498.Google Scholar
  66. Higes M., Martin-Hernández R., Meana A. (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe, J. Invertebr. Pathol. 92, 93–95.PubMedGoogle Scholar
  67. Higes M., Martín-Hernández R., Martínez-Salvador A., Garrido-Bailón E., González-Porto A.V., Meana A., Bernal J.L., Nozal M.J. Bernal J. (2009d) A preliminary study of the epidemiological factors related to honey bee colony loss in Spain, Environ. Microbiol. Reports, in press.Google Scholar
  68. Higes M., Martín R., Sanz A., Álvarez N., Sanz A., García-Palencia P., Meana A. (2005) El síndrome de despoblamiento de las colmenas en España. Consideraciones sobre su origen, Vida Apícola 133, 15–21.Google Scholar
  69. Huang Z.Y., Robinson G.E. (1996) Regulation of honey bee division of labor by colony age demography, Behav. Ecol. Sociobiol. 39, 147–158.Google Scholar
  70. Huang W.F., Jiang J.H., Chen Y.W., Wang C.H. (2007) A Nosema ceranae isolate from the honeybee Apis mellifera, Apidologie 38, 30–37.Google Scholar
  71. Keeling P. (2009) Five questions about Microsporidia, Plos. Pathog. 5, 1–3.Google Scholar
  72. Keeling P., Fast N.M. (2002) Microsporidia: biology and evolution of highly reduced intracellular parasites, Annu. Rev. Microbiol. 56, 93–116.PubMedGoogle Scholar
  73. Keohane E.M., Weiss L.M. (1999) The Microsporidia and Microsporidiosis, Wittner and Weiss (Eds.), Washington, DC, ASM press.Google Scholar
  74. Klee J., Besana A.M., Genersch E., Gisder S., Nanetti A., Tam D.Q., Chinh T.X., Puerta F., Ruz J.M., Kryger P., Message D., Hatjina F., Korpela S., Fries, I. Paxton R. (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera, J. Invertebr. Pathol. 96, 1–10.PubMedGoogle Scholar
  75. Korpela S. (2009) Nosema situation in Finland, 5th COLOSS Meet., Montpellier, http://www.coloss.org/documents/Vth_Coloss_Conference_Proceedings.pdf/ (accessed on 20 Nov. 2009).Google Scholar
  76. Kralj J., Fuchs S. (2006) Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers, Apidologie 37, 577–587.Google Scholar
  77. Kralj J., Fuchs S. (2009) Nosema sp. influences flight behavior of infected honey bee (Apis mellifera) foragers, Apidologie, in press.Google Scholar
  78. Kryeger P. (2009) Rare Nosema infections in Denmark. Proc. Workshop “Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/news/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  79. Le Conte Y., Navajas M. (2008) Climate change: impact on honey bee populations and diseases, Rev. Sci. Tech. Off. Int. Epiz. 27, 499–510.Google Scholar
  80. Lin H., Sullivan J., Huang Z.Y. (2009) Mechanisms through which Nosema apis affects onset of foraging in worker honeybees (Apis mellifera L.). Proc. Workshop “Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/news/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  81. Liu T.P. 1984. Ultrastructure of the midgut of the worker honeybee Apis mellifera heavily infected with Nosema apis, J. Invertebr. Pathol. 44, 282–291.Google Scholar
  82. Maistrello L., Lodesani M., Costa C., Leonardi F., Marani G., Caldon M., Mutinelli F., Granato A. (2008) Screening of natural compounds for the control of Nosema disease in honeybees (Apis mellifera), Apidologie 39, 436–445.Google Scholar
  83. Malone L.A., Gatehouse H.S., Tregidga E.L. (2001) Effects of Time, Temperature, and Honey on Nosema apis (Microsporidia: Nosematidae), a Parasite of the Honeybee, Apis mellifera (Hymenoptera: Apidae), J. Invertebr. Pathol. 77, 258–268.PubMedGoogle Scholar
  84. Martínez C. (1984) Notes on the prey taken by bee-eaters Merops apiaster at a colony in central Spain, Alauda 52, 45–50.Google Scholar
  85. Martín-Hernández R., Botías C., Meana A., Higes M. (2009b) Nosema diagnostic, Proc. Workshop “Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/news/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  86. Martín-Hernández R., Meana A., García-Palencia P., Marín P., Botías C., Garrido-Bailón E., Barrios L., Higes M. (2009a) Effect of temperature on the biotic potencial of honeybee microsporidia, Appl. Environ. Microbiol. 75, 2554–2557.PubMedGoogle Scholar
  87. Martín-Hernández R., Meana A., Higes M. (2005) Increase of nosemosis in Spain, Acta Parasitol. Portuguesa 12, 49–50.Google Scholar
  88. Martín-Hernández R., Meana A., Prieto L., Martínez-Salvador A., Garrido-Bailon E., Higes M. (2007) Outcome of colonization of Apis mellifera by Nosema ceranae, Appl. Environ. Microbiol. 73, 6331–6338.PubMedGoogle Scholar
  89. Mathis A. (2000) Microsporidia: emerging advances in understanding the basic biology of these unique organisms, Int. J. Parasitol. 30, 795–804.PubMedGoogle Scholar
  90. Mattila H.R., Otis G.W. (2006) Effects of pollen availability and Nosema infection during spring on division of labour and survival of worker honey bees, Environ. Entomol. 35, 708–717.Google Scholar
  91. Mayack C., Naug D. (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection, J. Invertebr. Pathol. 100, 185–188.PubMedGoogle Scholar
  92. McCowen M.C., Callender M.E., Lawlis J.F. (1951) Fumagillin (H-3) a new antibiotic with amebicidal properties, Science 113, 202–203.PubMedGoogle Scholar
  93. Meana A., García-Palencia P., Martín-Hernández R., Garrido-Bailón E., Fenoy S., Del Águila C., Higes M. (2007) Life cycle of Nosema ceranae in Apis mellifera, in: abstract of XXI International Conference of the World Association for the Advancement of Veterinary Parasitology, Gent (Belgium), p. 352.Google Scholar
  94. Mehr Z., Menapace D.M., Wilson W.T., Sackett R.R. (1976) Studies on the initiation and spread of chalkbrood within an apiary, Am. Bee J. 116, 266–268.Google Scholar
  95. Mobus B., de Bruyn C. (1993) The new Varroa handbook, Northern Bee Books, Mytholmroyd.Google Scholar
  96. Moffet J.O., Wilson W.T., Stoner A., Wardecker A. (1978) Feeding commercilally purchased pollen containing mummies caused chalkbrood, Am. Bee J. 118, 412–414.Google Scholar
  97. Nanetti A. (2009) ApiHerb as an alternative product to treat Nosema infection. Proc. Workshop “Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/news/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  98. Naug D., Camazine S. (2002) The role of colony organization on pathogen transmission in social insects, J. Theor. Biol. 215, 427–439.PubMedGoogle Scholar
  99. Naug D., Smith B. (2007) Experimentally induced change in infectious period affects transmission dynamics in a social group, Proc. R. Soc. B 274, 61–65.PubMedGoogle Scholar
  100. Naug D., Gibbs A. (2009) Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae, Apidologie 40, 595–599.Google Scholar
  101. Nelson C.M., Ihle K.E., Fondrk M.K., Page R.E., Amdam G.V. (2007) The gene vitellogenin has multiple coordinating effects on social organization, Plos Biol. 5, 673–677.Google Scholar
  102. Neumann P. (2009) Conclussions of 5th COLOSS Meet. Montpellier, http://www.coloss.org/documents/Vth_Coloss_Conference_Proceedings.pdf/ (accessed on 20 Nov. 2009).Google Scholar
  103. Neveu-Lemaire M. (1938) Traité d’Entomologie Médicale et Vétérinaire, Vigot Frères, Éditeurs, Paris.Google Scholar
  104. Nozal M.J., Berna J.L., Martín M.T., Bernal J., Alvaro A., Martín-Hernández R., Higes M. (2008) Trace analysis of fumagillin in honey by liquid chromatography-DAD-electrospray ionization mass spectrometry, J. Chromatogr. A 1190, 224–231.PubMedGoogle Scholar
  105. O’Mahony E.M., Tay W.T., Paxton J.R. (2007) Multiple rRNA variants in a single spore of the microsporidium Nosema bombi, J. Eukar. Microbiol. 54, 103–109.Google Scholar
  106. Office International des Epizooties (OIE) (2004) Manual of Standards for Diagnostic Test and Vaccines, http://www.oie.int/eng/normes/mmanual/A_00123.htm (accessed on 20 Nov. 2009).Google Scholar
  107. Office International des Epizooties (OIE) (2008) Manual of Standards for Diagnostic Test and Vaccines, http://www.oie.int/eng/normes/mmanual/2008/ (accessed on 20 Nov. 2009).Google Scholar
  108. Paxton R., Klee J., Korpela S., Fries I. (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis, Apidologie 38, 558–565.Google Scholar
  109. Plischuk S., Martín-Hernández R., Prieto L., Lucía M., Botías C., Meana A., Abrahamovich A.H., Lange C., Higes M. (2009) South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honey bees (Apis mellifera), Environ. Microbiol. Reports 1, 131–135.Google Scholar
  110. Remolina S.C., Hafez D.M., Robinson G.E., Hughes K.A. (2007) Senescence in the worker honey bee Apis mellifera, J. Insect Physiol. 53, 1027–1033.PubMedGoogle Scholar
  111. Rice R.N. (2001) Nosema disease in honeybees. Genetic variation and control. RIRDC No. 01/46, Kingston, https://www.rirdc.infoservices.com.au/downloads/01-046.pdf (accessed on 1 December 2009).Google Scholar
  112. Robinson G.E., Strambi C., Strambi A. (1991) Comparison of juvenile hormone and ecdysteroid hemolymph titres in adult worker and queen honey bees (Apis mellifera), J. Insect Physiol. 37, 929–935.Google Scholar
  113. Santrac V., Granato A., Mutinelli F. (2009) First detection of Nosema ceranae in Apis mellifera from Bosnia and Herzegovina, Proc. Workshop “Nosema disease: lack of knowledge and work standardization” (COST Action FA0803) Guadalajara, http://www.coloss.org/news/nosema-workshop-proceedings-online (accessed on 20 Nov. 2009).Google Scholar
  114. Seehuus S.C., Norberg K., Gimsa U., Krekling T., Amdam G.V. (2006) Reproductive protein protects functionally sterile honey bee workers from oxidative stress, PNAS 103, 962–967.PubMedGoogle Scholar
  115. Tapaszti Z., Forgách P., Kövágó C., Békési L., Bakonyi T., Rusvai M. (2009) First detection and dominance of Nosema ceranae in Hungarian honeybee colonies, Acta Vet. Hung. 57, 383–388.PubMedGoogle Scholar
  116. Tay T., O’Mahony E.M., Paxton R.J. (2005) Complete rRNA gene sequences reveal that the Microsporidium Nosema bombi infects diverse bumblebee (Bombus spp.) hosts and contains multiple polymorphic sites, J. Eukar. Microbiol. 52, 505–513.Google Scholar
  117. Tofilski A. (2009) Shorter-lived workers start foraging earlier, Insectes Soc. 56, 359–366.Google Scholar
  118. Topolska G., Kasprzak S. (2007) First cases of Nosema ceranae infection in bees in Poland, Medycyna Wet. 63, 1504–1506.Google Scholar
  119. Topolska G., Gajda A., Hartwig A. (2008) Polish honey bee colony-loss during the winter of 2007/2008, J. Apic. Sci. 52, 95–103.Google Scholar
  120. Van der Zee R., Bakker O., Higes M., Martín-Hernández R. (2008) Dutch trial on beecolony losses 2008–2009, first findings, in: Proceedings of Eurbee3, the 3rd European conference of Apidology. Queen’s University Belfast Northern Ireland, p. 108.Google Scholar
  121. Van der Zee R. (2009) Colony Losses in the Netherlands, J. Apic. Res., accepted.Google Scholar
  122. Volet B., Burkhardt M. (2006) Rare and unusual records of breeding, migrating and wintering bird species in Switzerland, 2005, Orinithologische Beobachter 103, 257–270.Google Scholar
  123. Webster T.C., Pomper K.W., Hunt G., Thacker E.M., Jones S.C. (2004) Nosema apis infection in worker and queen Apis mellifera, Apidologie 35, 49–54.Google Scholar
  124. Weidner E., Byrd W. (1982) The microsporidian spore invasion tube. II. Role of calcium in the activation of invasion tube discharge, J. Cell. Biol. 93, 970–975.PubMedGoogle Scholar
  125. Weiss L.M. (2003) Microsporidia 2003: IWOP 8, J. Eukar. Microbiol. 50, 566–568.Google Scholar
  126. Weiss L.M., Vossbrinck C.R. (1999) Molecular biology, molecular phylogeny, and molecular diagnostic approaches to the microsporidia, in: Wittner M., Weiss L.M. (Eds.), The Microsporidia and microsporidiosis, American Society for Microbiology Press, Washington DC, pp. 129–171.Google Scholar
  127. Whitfield C.W., Ben-Shahar Y., Brillet C., Leoncini I., Crauser D., Leconte Y., Rodriguez-Zas S., Robinson G.E. (2006) Genomic dissection of behavioral maturation in the honey bee, Proc. Natl. Acad. Sci. 103, 16068–16075.PubMedGoogle Scholar
  128. Williams B.A.P. (2009) Unique physiology of hostparasite interactions in mircrosporidia infections, Cell. Microbiol. 11, 1551–1560.PubMedGoogle Scholar
  129. Williams G.R., Shafer A.B.A., Rogers R.L.E., Shutler D., Stewart D.T. (2008) First detection of Nosema ceranae, a microsporidian parasite of European honey bees (Apis mellifera), in Canada and central USA, J. Invertebr. Pathol. 97, 189–192.PubMedGoogle Scholar
  130. Wittner M., Weiss L.M. (1999) The Microsporidia and Microsporidiosis, Washington, DC, ASM press.Google Scholar
  131. Woyciechowski M., Morón D. (2009) Life expectancy and onset of foraging in the honeybee (Apis mellifera), Insectes Soc. 56, 193–201.Google Scholar
  132. Yosef R., Markovets M., Mitchell L., Tryjanowski P. (2006) Body conditions as a determinant for stopover in bee-eaters (Merops apiaster) on spring migration in the Arava Valley, southern Israel, J. Arid Environ. 64, 401–411.Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Mariano Higes
    • 1
  • Raquel Martín-Hernández
    • 1
  • Aranzazu Meana
    • 2
  1. 1.Laboratorio de Patología ApícolaCentro Apícola Regional, JCCMMarchamaloSpain
  2. 2.Departamento de Sanidad Animal, Facultad de VeterinariaUniversidad Complutense de MadridMadridSpain

Personalised recommendations