Apidologie

, Volume 41, Issue 3, pp 312–331 | Cite as

Pesticides and honey bee toxicity — USA

  • Reed M. Johnson
  • Marion D. Ellis
  • Christopher A. Mullin
  • Maryann Frazier
Review Article

Abstract

Until 1985 discussions of pesticides and honey bee toxicity in the USA were focused on pesticides applied to crops and the unintentional exposure of foraging bees to them. The recent introduction of arthropod pests of honey bees, Acarapis woodi (1984), Varroa destructor (1987), and Aethina tumida (1997), to the USA have resulted in the intentional introduction of pesticides into beehives to suppress these pests. Both the unintentional and the intentional exposure of honey bees to pesticides have resulted in residues in hive products, especially beeswax. This review examines pesticides applied to crops, pesticides used in apiculture and pesticide residues in hive products. We discuss the role that pesticides and their residues in hive products may play in colony collapse disorder and other colony problems. Although no single pesticide has been shown to cause colony collapse disorder, the additive and synergistic effects of multiple pesticide exposures may contribute to declining honey bee health.

pesticide honey bee toxicity wax residue CCD 

Pesticides et toxicité chez l’abeille — USA

pesticides abeille toxicité résidus dans la cire CCD USA 

Pestizide und Toxizität für Honigbienen — USA

Zusammenfassung

Neuere systemisch wirkende Pestizide, einschließlich der Neonikotinoide (z. B. Imidacloprid) und Phenylpyrazole (z. B. Fipronil) finden in den USA verbreitete Anwendung im Pflanzenschutz. Das Gefährdungspotenzial von Bienen durch diese Präparate unterscheidet sich von dem traditioneller Pestizidanwendungen, bei denen die hauptsächliche Sorge der akuten Giftigkeit galt. Im Hinblick auf die Verordnungen zu Pestiziden in den USA wurden die Folgen von chronischer und sublethaler Belastung durch systemische Mittel bisher nicht umfassend in Betracht gezogen, obwohl die Sachlage, was diese Präparate betrifft, gegenwärtig von der Umweltbehörde (EPA) begutachtet wird. Zahlreiche in den USA angebaute Pflanzen wurden genetisch verändert, um entweder insektizid wirkende Bt Toxine oder Herbizidresistenz zu exprimieren. Insektizid wirkende Bt Toxine scheinen jedoch spezifisch toxisch für Ertragsschädlinge zu sein und können daher den Bienen nützen, indem sie die Anwendung traditioneller Pestizide reduzieren.

Bis zur Einführung von arthropoden Bienenschädlingen in die USA in der Mitte der achtziger Jahre wurden Bienen den verschiedenen Pestiziden nur unbeabsichtigt ausgesetzt, während sie auf gespritzten Pflanzen sammelten. Die Notwendigkeit, Bienenschädlinge, besonders die Varroamilbe (Varroa destructor), zu bekämpfen, erfordert seitdem jedoch oft eine absichtliche Anwendung von Pestiziden in Bienenvölkern. Tau-Fluvalinat und Coumaphos, jeweils in Streifenform angewendet, sind in den USA immer noch für die Anwendung in Bienenvölkern zugelassen, obwohl die Wirksamkeit dieser Substanzen gegen Varroamilben durch die Entwicklung von Resistenzen vermindert wurde. Ein neues Varroazid, Fenpyroximate, wurde in einigen Staaten zur Anwendung zugelassen. Essentielle Öle, einschließlich Thymol und Menthol, sind ebenso wie Ameisensäure zur Anwendung in der Verdampfung zugelassen. Oxalsäure ist nur in Kanada, jedoch nicht in den USA zugelassen.

Über 150 verschiedene Pestizide wurden in Proben aus Bienenständen in den USA gefunden. Von Imkern eingesetzte Pestizide werden tendenziell öfter im Wachs der Völker nachgewiesen, von wo aus Pollen, Bienenbrot und Honig damit kontaminiert werden. Auf der anderen Seite werden Pestizide, vor allem Fungizide, die nicht in Bienenvölkern eingesetzt werden, tendenziell am häufigsten in Pollen nachgewiesen und kontaminieren das Wachs nur dann, wenn sie eingelagert werden. Da Honigbienen den sublethalen Konzentrationen zahlreicher Pestizide gleichzeitig ausgesetzt sind, wird zusätzliche Forschung zur Aufklärung synergistischer Effekte bei chronischer sublethaler Belastung mit mehreren Pesitziden benötigt.

Pestizide Honigbiene Toxizität Wachsrückstände CCD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey M., Walker P., Walker P.T. (1986) Pest Control Safe for Bees, IBRA, London, 224 p.Google Scholar
  2. Ailouane Y., Lambin M., Armengaud C., El Hassani A., Gary V. (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior, Environ. Toxicol. Chem. 28, 113–122.Google Scholar
  3. Alaux C., Brunet J., Dussaubat C., Mondet F., Tchamitchan S., Cousin M., Brillard J., Baldy A., Belzunces L.P., Le Conte Y. (2010) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera), Environ. Microbiol., in press, DOI: 10.111 1/j.1462-2920.2009.02123.x.Google Scholar
  4. Albero B., Sanchez-Brunete C., Tadeo J.L. (2004) Analysis of pesticides in honey by solid-phase extraction and gas chromatography — Mass spectrometry, J. Agric. Food Chem. 52, 5828–5835.PubMedGoogle Scholar
  5. Alder L., Greulich K., Kempe G., Vieth B. (2006) Residue analysis of 500 high priority pesticides: Better by GC-MS or LC-MS/MS? Mass Spectrometry Reviews 25, 838–865.PubMedGoogle Scholar
  6. Aliano N.P., Ellis M.D. (2008) Bee-to bee contact drives oxalic acid distribution in honey bee colonies, Apidologie 39, 481–487.Google Scholar
  7. Anderson J.F., Wojtas M.A. (1986) Honey bees (Hymenoptera, Apidae) contaminated with pesticides and polychlorinated biphenyls, J. Econ. Entomol. 79, 1200–1205.Google Scholar
  8. Arpaia S. (1996) Ecological impact of Bt-transgenic plants: 1. Asessing possible effects of CrtIIIB toxin on honey bee (Apis mellifera) colonies, J. Genet. Breed. 50, 315–319.Google Scholar
  9. Atkins E.L. (1992) Injury to honey bees by poisoning. In: J.M. Graham (ed.), The Hive and the Honey Bee, Rev. Dadant and Sons, Hamilton, IL. 1324 p.Google Scholar
  10. Aupinel P., Fortini D., Dufour H., Taséi J.N., Michaud B. (2005) Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae, Bull. Insectol. 58, 107–111.Google Scholar
  11. Babendreier D., Joller D., Romeis J., Bigler F., Widmer F. (2007) Bacterial community structures in honeybee intestines and their response to two insecticidal proteins, FEMS Microbiol. Ecol. 59, 600–610.PubMedGoogle Scholar
  12. Babendreier D., Kalberer N.M., Romeis J., Fluri P., Mulligan E., Bigler F. (2005) Influence of Bt-transgenic pollen, Bt-toxin and protease inhibitor (SBTI) ingestion on development of the hypopharyngeal glands in honeybees, Apidologie 36, 585–594.Google Scholar
  13. Babendreier D., Romeis J., Bigler J., Fluri P. (2006) Neue erkenntnisse, zu möglichen auswirkungen von transgenem Bt-mais auf bienen, Forsch. Agroscope Liebefeld-Posieux ALP, Schweiz.Google Scholar
  14. Bailey J., Scott Dupree C., Harris R., Tolman J., Harris B. (2005) Contact and oral toxicity to honey bees in Ontario, Canada, Apidologie 36, 623–633.Google Scholar
  15. Balayiannis G., Balayiannis P. (2008) Bee honey as an environmental bioindicator of pesticides’ occurrence in six agricultural areas of Greece, Arch. Environ. Contam. Toxicol. 55, 462–470.PubMedGoogle Scholar
  16. Barron A.B., Maleszka R., Vander Meer R.K., Robinson G.E. (2007) Octopamine modulates honey bee dance behavior, Proc. Natl. Acad. Sci. USA 104, 1703–1707.PubMedGoogle Scholar
  17. Bernal J.L., Jimenez J.J., del Nozal M.J., Higes M., Llorente J. (2000) Gas chromatographic determination of acrinathrine and 3-phenoxybenzaldehyde residues in honey, J. Chromatogr. A 882, 239–243.PubMedGoogle Scholar
  18. Berry J. (2009) Pesticides, bees and wax: an unhealthy, untidy mix, Bee Culture 137, 33–35.Google Scholar
  19. Blasco C., Fernandez M., Pena A., Lino C., Silveira M.I., Font G., Pico Y. (2003) Assessment of pesticide residues in honey samples from Portugal and Spain, J. Agric. Food Chem. 51, 8132–8138.PubMedGoogle Scholar
  20. Blasco C., Font G., Pico Y. (2008) Solid-phase microextraction-liquid chromatography-mass spectrometry applied to the analysis of insecticides in honey, Food Additives and Contaminants 25, 59–69.Google Scholar
  21. Boecking O., Genersch E. (2008) Varroosis — the ongoing crisis in bee keeping, Journal Fur Verbraucherschutz Und Lebensmittelsicherheit-Journal of Consumer Protection and Food Safety 3, 221–228.Google Scholar
  22. Bogdanov S. (2004) Beeswax: quality issues today, Bee World 85, 46–50.Google Scholar
  23. Bogdanov S., (2006) Contaminants of bee products, Apidologie 37, 1–18.Google Scholar
  24. Bogdanov S., Kilchenmann V., Imdorf A. (1997) Acaricide residues in beeswax and honey, Apiacta 32, 72–80.Google Scholar
  25. Bogdanov S., Kilchenmann V., Imdorf A. (1998) Acaricide residues in some bee products, J. Apic. Res. 37, 57–67.Google Scholar
  26. Bogdanov S., Kilchenmann V., Seiler K., Pfefferli H., Frey T., Roux B., Wenk P., Noser J. (2004) Residues of para-dichlorobenzene in honey and beeswax, J. Apic. Res. 43, 14–16.Google Scholar
  27. Bonmatin J.M., Marchand P.A., Charvet R., Moineau I., Bengsch E.R., Colin M.E. (2005) Quantification of imidacloprid uptake in maize crops, J. Agric. Food Chem. 53, 5336–5341.PubMedGoogle Scholar
  28. Burley L., Fell R., and Saacke R. (2008) Survival of honey bee (Hymenoptera: Apidae) spermatozoa incubated at room temperature from drones exposed to miticides, J. Econ. Entomol. 101, 1081–1087.PubMedGoogle Scholar
  29. Canadian Honey Council (2005) Conditions of use for oxalic acid dihydrate, HiveLights 18 (Special Suppl.).Google Scholar
  30. Cao L.C., Honeyman T.W., Cooney R., Kennington L., Scheid C.R., Jonassen J.A. (2004) Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity, Kidney Int. 66, 1890–1900.PubMedGoogle Scholar
  31. CDPR (California department of pesticide regulation) (2006) Top 100 pesticides by acres treated in 2005, CADPR, Sacramento, CA, www.cdpr.gov (accessed 24 August 2009).Google Scholar
  32. CDPR (California department of pesticide regulation) (2008) Authorization for Section 18 use of Hivastan, http://www.cdpr.ca.gov/docs/registration/sec18/08-10.htm (accessed 28 August 2009).Google Scholar
  33. Charrière J.D., Imdorf A. (2002) Oxalic acid treatment by trickling against Varroa destructor: recommendations for use in central Europe and under temperate climate conditions, Bee World 82, 51–60.Google Scholar
  34. Chauzat M.P., Faucon J.P. (2007) Pesticide residues in beeswax samples collected from honey bee colonies (Apis mellifera 1.) in France, Pest Manage. Sci. 63, 1100–1106.Google Scholar
  35. Chauzat M.P., Carpentier P., Martel A.C., Bougeard S., Cougoule N., Porta P., Lachaize J., Madec F., Aubert M., Faucon J.P. (2009) Influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France, Environ. Entomol. 38, 514–523.PubMedGoogle Scholar
  36. Chauzat M.P., Faucon J.P., Martel A.C., Lachaize J., Cougoule N., Aubert M. (2006) A survey of pesticide residues in pollen loads collected by honey bees in France, J. Econ. Entomol. 99, 253–262.PubMedGoogle Scholar
  37. Choudhary A., Sharma D.C. (2008a) Pesticide residues in honey samples from Himachal Pradesh (India), Bull. Environ. Contam.Toxicol. 80, 417–422.PubMedGoogle Scholar
  38. Choudhary A., Sharma D.C. (2008b) Dynamics of pesticide residues in nectar and pollen of mustard (Brassica juncea (L.) Czern.) grown in Himachal Pradesh (India), Environ. Monit. Assess. 144, 143–150.PubMedGoogle Scholar
  39. Claudianos C., Ranson H., Johnson R.M., Biswas S., Schuler M.A., Berenbaum M.R., Feyereisen R., Oakeshott J.G. (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee, Insect Mol. Biol. 15, 615–636.PubMedGoogle Scholar
  40. Colin M.E., Bonmatin J.M., Moineau I., Gaimon C., Brun S., Vermandere J.P. (2004) A method to quantify and analyze the foraging activity of honey bees: relevance to the sublethal effects induced by systemic insecticides, Arch. Environ. Contam. Toxicol. 47, 387–395.PubMedGoogle Scholar
  41. Collins A.M., Pettis J.S., Wilbanks R., Feldlaufer M.F. (2004) Performance of honey bee (Apis mellifera) queens reared in beeswax cells impregnated with coumaphos, J. Apic. Res. 43, 128–134.Google Scholar
  42. Crane E., Walker P. (1983) The Impact of Pest Management on Bees and Pollination, IBRA, London, 129 p.Google Scholar
  43. Croft B.A. (1990) Arthropod Biological Control Agents and Pesticides, New York, Wiley, 723 p.Google Scholar
  44. Cutler G.C., Scott-Dupree C.D. (2007) Exposure to clothianidin seed-treated canola has no long-term impact on honey bees, J. Econ. Entomol. 100, 765–772.PubMedGoogle Scholar
  45. Davies T.G.E., Field L.M., Usherwood P.N.R., Williamson M.S. (2007) DDT, pyrethrins, pyrethroids and insect sodium channels, IUBMB Life 59, 151–162.PubMedGoogle Scholar
  46. Decourtye A., Devillers J., Cluzeau S., Charreton M., Pham-Delegue M.H. (2004) Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions, Ecotoxicol. Environ. Safety 57, 410–419.PubMedGoogle Scholar
  47. Decourtye A., Devillers J., Genecque E., Le Menach K., Budzinski H. (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of honey bes, Apis mellifera, Arch. Environ. Toxicol. Chem. 28, 113–122.Google Scholar
  48. Decourtye A., Mader E., Desneux N. (2010) Landscape enhancement of floral resources for honey bees in agro-ecosystems, Apidologie 41, 264–277.Google Scholar
  49. Decourtye A., Pham-Delegue M.H. (2002) The proboscis extension response: assessing the sublethal effects of pesticides on the honey bee. In Honey Bees: Estimaing the Environmental Impact of Chemicals, in: Devillers J., Pham-Delegue M.H. (Eds.), Taylor and Francis, London, 336 p.Google Scholar
  50. Desneux N., Decourtye A., Delpuech J.M. (2007) The sublethal effects of pesticides on beneficial arthropods, Annu. Rev. Entomol. 52, 81–106.PubMedGoogle Scholar
  51. Devillers J., Decourtye A., Budzinski H., Pham-Delègue M.H., Cluzeau S., Maurin C. (2003) Comparative toxicity and hazards of pesticides to Apis and non-Apis bees, A chemometrical study, SAR and QSAR in Environ. Res. 14, 389–403.Google Scholar
  52. Duan J.J., Marvier M. Huesing J., Dively G., Huang Z.Y. (2008) A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae), PLoS ONE 3, e1415.PubMedGoogle Scholar
  53. Eischen F.A., Graham R.H. (2008) Feeding overwintering honey bee colonies infected with Nosema ceranae, In Proceedings of the American Bee Research Conference, Am. Bee J. 148, 555.Google Scholar
  54. Ellis M.D., Baxendale F.P. (1997) Toxicity of seven monoterpenoids to tracheal mites (Acari: Tarsonemidae) and their honey bee (Hymenoptera: Apidae) hosts when applied as fumigants, J. Econ. Entomol. 90, 1087–1091.Google Scholar
  55. Ellis M.D., Baxendale F.P., Keith D.L. (1998) Protecting bees when using insecticides, NebGuide G98-1347, University of Nebraska Cooperative Extension.Google Scholar
  56. Ellis M.D., Nelson R., Simonds C. (1988). A comparison of the fluvalinate and ether roll methods of sampling for Varroa mites in honey bee colonies, Am. Bee J. 128, 262–263.Google Scholar
  57. Elzen P.J., Westervelt D. (2002) Detection of coumaphos resistance in Varroa destructor in Florida, Am. Bee J. 142, 291–292.Google Scholar
  58. Elzen P.J., Baxter J.R., Spivak M., Wilson W.T. (2000) Control of Varroa jacobsoni Oud. resistant to fluvalinate and amitraz using coumaphos, Apidologie 31, 437–441.Google Scholar
  59. Elzen P.J., Eischen F.A., Baxter J.B., Elzen G.W., Wilson W.T. (1999). Detection of resistance in US Varroa jacobsoni Oud. (Mesostigmata: Varroidae) to the acaricide fluvalinate, Apidologie 30, 13–17.Google Scholar
  60. Enan E. (2001) Insecticidal activity of essential oils: octopaminergic sites of action, Comparative Biochemistry and Physiology Part C, Toxicol. Pharmacol. 130, 325–337.Google Scholar
  61. EPA (environmental protection agency) (2009a) Federal insecticide fungicide and rodenticide act, http://www.epa.gov/pesticides/regulating/laws. htm (accessed 24 August 2009).Google Scholar
  62. EPA (environmental protection agency) (2009b) Pesticide registration review, http://www.epa.gov/ oppsrrd1/registration_review/highlights.htm (accessed 24 August 2009).Google Scholar
  63. Estep C.B., Menon G.N., Williams H.E., Cole A.C. (1977) Chlorinated hydrocarbon insecticide residues in Tennessee honey and beeswax, Bull. Environ. Contam. Toxicol. 17, 168–174.PubMedGoogle Scholar
  64. Evans P.D., Gee J.D. (1980) Action of formamidine pesticides on octopamine receptors, Nature 287, 60–62.PubMedGoogle Scholar
  65. Faucon J.P., Mathieu L., Ribiere M., Martel A.C., Drajnudel P., Zeggane S., Aurieres C., Aubert M.F.A. (2002) Honey bee winter mortality in France in 1999 and 2000, Bee World 83, 14–23.Google Scholar
  66. Federal Register (2000) Coumaphos: pesticide tolerance for emergency action, U.S. Environmental Protection Agency, Washington, DC.Google Scholar
  67. Fernandez-Muino M.A., Sancho M.T., Muniategui S., Huidobro J.F., Simallozano J. (1995) Nonacaricide pesticide residues in honey — Analytical methods and levels found, J. Food Protect. 58, 1271–1274.Google Scholar
  68. Fernandez M., Pico Y., Manes J. (2002) Analytical methods for pesticide residue determination in bee products, J. Food Protect. 65, 1502–1511.Google Scholar
  69. Floris I., Satta A., Cabras P., Garau V.L., Angioni A. (2004) Comparison between two thymol formulations in the control of Varroa destructor: effectiveness, persistence, and residues, J. Econ. Entomol. 97, 187–191.PubMedGoogle Scholar
  70. Frazier M., Mullin C., Frazier J., Ashcraft S. (2008) What have pesticides got to do with it? Am. Bee J. 148, 521–523.Google Scholar
  71. Fries I. (1991) Treatment of sealed honey bee brood with formic acid for control of Varroa jacobsoni, Am. Bee J. 131, 313–314.Google Scholar
  72. Ghini S., Fernandez M., Pico Y., Marin R., Fini F., Manes J., Girotti S. (2004) Occurrence and distribution of pesticides in the province of Bologna, Italy, using honeybees as bioindicators, Arch. Environ. Contam. Toxicol. 47, 479–488.PubMedGoogle Scholar
  73. Girolami V., Greatti M., Di Bernardo A., Tapparo A., Giorio C., Squartini A., Mazzon L., Mazaro M., Mori N. (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees, J. Econ. Entomol. 102, 1808–1815.PubMedGoogle Scholar
  74. Gregorc A., Bowen I. (2000) Histochemical characterization of cell death in honeybee larvae midgut after treatment with Paenibacillus larvae, amitraz and oxytetracycline, Cell Biol. Int. 24, 319–324.PubMedGoogle Scholar
  75. Gregorc A., Smodisskerl M.I. (2007) Toxicological and immunohistochemical testing of honeybees after oxalic acid and rotenone treatments, Apidologie 38, 296–305.Google Scholar
  76. Gunasekara A., Truong T., Goh K., Spurlock F., Tjeerdema R. (2007) Environmental fate and toxicology of fipronil, J. Pestic. Sci. 32, 189–199.Google Scholar
  77. Haarmann T., Spivak M., Weaver D., Weaver B., Glenn T. (2002) Effects of fluvalinate and coumaphos on queen honey bees (Hymenoptera: Apidae) in two commercial queen rearing operations, J. Econ. Entomol. 95, 28–35.PubMedGoogle Scholar
  78. Halm M.P., Rortais A., Arnold G., Taséi J.N., Rault S. (2006) New risk assessment approach for systemic insecticides: The case of honey bees and imidacloprid (Gaucho), Environ. Sci. Technol. 40, 2448–2454.PubMedGoogle Scholar
  79. Higes M., Meana A., Suarez M., Llorente J. (1999) Negative long-term effects on bee colonies treated with oxalic acid against Varroa jacobsoni Oud., Apidologie 30, 289–292.Google Scholar
  80. ISB (inf. syst. biotechnol.) (2007) Field test release applications in the US (Database provided by APHIS biotechnology regulatory services, http://www.isb.vt.edu/CFDOCS/fieldtests1.cfm (accessed 24 August 2009).Google Scholar
  81. Isman M.B. (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world, Annu. Rev. Entomol. 51, 45–66.PubMedGoogle Scholar
  82. Iwasa T., Motoyama N., Ambrose J.T., Roe R.M. (2003) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera, Crop Prot. 23, 371–378.Google Scholar
  83. Jeschke P., Nauen R. (2008) Neonicotinoids — from zero to hero in insecticide chemistry, Pest Manage. Sci. 64, 1084–1098.Google Scholar
  84. Jimenez J.J., Bernal J.L., del Nozal M.J., Martin M.T. (2005) Residues of organic contaminants in beeswax. Eur. J. Lipid Sci. Technol. 107, 896–902.Google Scholar
  85. Johansen C.A. (1977) Pesticides and pollinators, Annu. Rev. Entomol. 22, 177–192.Google Scholar
  86. Johansen C.A., Mayer D.F. (1990) Pollinator Protection: a Bee and Pesticide Handbook, Wicwas Press, Cheshire, CT, 212 p.Google Scholar
  87. Johnson R.M., Pollock H.S., Berenbaum M.R. (2009) Synergistic interactions between in-hive miticides in Apis mellifera, J. Econ. Entomol. 102, 474–479.PubMedGoogle Scholar
  88. Johnson R.M., Wen Z., Schuler M.A., Berenbaum M.R. (2006) Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases, J. Econ. Entomol. 99, 1046–1050.PubMedGoogle Scholar
  89. Keyhani J., Keyhani E. (1980) EPR study of the effect of formate on cytochrome oxidase, Biochem. Biophys. Res. Comm. 92, 327–333.PubMedGoogle Scholar
  90. Kim Y.J., Lee S.H., Lee S.W., Ahn Y.J. (2004) Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross-resistance and biochemical resistance mechanisms, Pest Manage. Sci. 60, 1001–1006.Google Scholar
  91. Kubik M., Nowacki J., Pidek A., Warakomska Z., Michalczuk L., Goszczynski W. (1999) Pesticide residues in bee products collected from cherry trees protected during blooming period with contact and systemic fungicides, Apidologie 30, 521–532.Google Scholar
  92. Kubik M., Nowacki J., Pidek A., Warakomska Z., Michalczuk L., Goszczynski W., Dwuznik B. (2000) Residues of captan (contact) and difenoconazole (systemic) fungicides in bee products from an apple orchard, Apidologie 31, 531–541.Google Scholar
  93. Laurent F.M., Rathahao E. (2003) Distribution of (14)C imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment, J. Agric. Food Chem. 51, 8005–8010.PubMedGoogle Scholar
  94. Lemaux P.G. (2008) Genetically engineered plants and foods: a scientist’s analysis of the issues, Annu. Rev. Plant Biol. 59, 771–812.PubMedGoogle Scholar
  95. Li A.Y., Davey R.B., Miller R.J., George J.E. (2004) Detection and characterization of amitraz resistance in the southern cattle tick, Boophilus microplus (Acari: Ixodidae), J. Med. Entomol. 41, 193–200.PubMedGoogle Scholar
  96. Li A.Y., Pruett J.H., Davey R.B., George J.E. (2005) Toxicological and biochemical characterization of coumaphos resistance in the San Roman strain of Boophilus microplus (Acari: Ixodidae), Pestic. Biochem. Physiol. 81, 145–153.Google Scholar
  97. Lodesani M., Costa C. (2005) Limits of chemotherapy in beekeeping: development of resistance and the problem of residues, Bee World 86, 102–109.Google Scholar
  98. Lodesani M., Colombo M., Spreafico M. (1995) Ineffectiveness of Apistan(R) treatment against the mite Varroa jacobsoni Oud. in several districts of Lombardy (Italy), Apidologie 26, 67–72.Google Scholar
  99. Lodesani M., Costa C., Serra G., Colombo R., Sabatini A.G. (2008) Acaricide residues in beeswax after conversion to organic beekeeping method, Apidologie 39, 324–333.Google Scholar
  100. Lodesani M., Pellacani A., Bergomi S., Carpana E., Rabitti T., Lasagni P. (1992) Residue determination for some products used against Varroa infestation in bees, Apidologie 23, 257–272.Google Scholar
  101. Macedo P.A., Ellis M.D., Siegfried B.D. (2002) Detection and quantification of fluvalinate resistance in Varroa mites in Nebraska, Am. Bee J. 147, 523–526.Google Scholar
  102. Marchetti S., Barbattini R. (1984) Comparative effectiveness of treatments used to control Varroa jacobsoni Oud., Apidologie 15, 363–378.Google Scholar
  103. Martel A.C., Zeggane S., Aurieres C., Drajnudel P., Faucon J.P., Aubert M. (2007) Acaricide residues in honey and wax after treatment of honey bee colonies with Apivar (R) or Asuntol (R) 50, Apidologie 38, 534–544.Google Scholar
  104. Meimaridou E., Jacobson J., Seddon A.M., Noronha-Dutra A.A., Robertson W.G., Hothersal J.S. (2005) Crystal and microparticle effects on MDCK cell superoxide production: oxalate-specific mitochondrial membrane potential changes, Free Radical Biology and Medicine 38, 1553–1564.PubMedGoogle Scholar
  105. Mineau P., Harding K.M., Whiteside M., Fletcher M.R., Garthwaite D., Knopper L.D. (2008) Using reports of bee mortality in the field to calibrate laboratory-derived pesticide risk indices, Environ. Entomol. 37, 546–554.PubMedGoogle Scholar
  106. Motoba K., Nishizawa H., Suzuki T., Hamaguchi H., Uchida M., Funayama S. (2000) Species-specific detoxification metabolism of fenpyroximate, a potent acaricide, Pestic. Biochem. Physiol. 67, 73–84.Google Scholar
  107. Motoba K., Suzuki T., Uchida M. (1992) Effect of a new acaricide, fenpyroximate, on energy metabolism and mitochondrial morphology in adult female Tetranychus urticae (two-spotted spider mite), Pestic. Biochem. Physiol, 43, 37–44.Google Scholar
  108. Mullin C.A., Frazier M., Frazier J.L., Ashcraft S., Simonds R., vanEngelsdorp D., Pettis J.S. (2010) High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health, PLoS One, accessed 19 March 2010, http://dx.plos.org/10.1371/journal.pone.0009754.Google Scholar
  109. NAS (national academy of sciences) (2007) Status of pollinators in North America, National Academy Press, Washington, DC.Google Scholar
  110. Nguyen B.K., Saegerman C., Pirard C., Mignon J., Widart J., Tuirionet B., Verheggen F.J., Berkvens D., De Pauw E., Haubruge E. (2009) Does imidacloprid seed-treated maize have an impact on honey bee mortality? J. Econ. Entomol. 102, 616–623.PubMedGoogle Scholar
  111. NOD Apiary Products, Directions for use, www.miteaway.com/MAII_flyer.pdf (accessed 20 August 2009).Google Scholar
  112. OEPP/EPPO (1992) Guideline on test methods for evaluating the side effects of plant protection products on honeybees, Bull. OEPP/EPPO 22, 201–215.Google Scholar
  113. PAN (pesticide action network) Accessed 12 August 2009, http://www.pesticideinfo.org.Google Scholar
  114. Pettis J.S., Collins A.M., Wilbanks R., Feldlaufer M.F. (2004) Effects of coumaphos on queen rearing in the honey bee, Apis mellifera, Apidologie 35, 605–610.Google Scholar
  115. Pilling E.D., Jepson P.C. (1993) Synergism between EBI fungicides and A pyrethroid insecticide in the honeybee (Apis mellifera), Pestic. Sci. 39, 293–297.Google Scholar
  116. Pilling E.D., Bromley-Challenor K.A.C., Walker C.H., Jepson P.C. (1995) Mechanism of synergism between the pyrethroid insecticide λ-cyhalothrin and the imidazole fungicide orochloraz, in the honeybee (Apis mellifera L.), Pestic. Biochem. Physiol. 51, 1–11.Google Scholar
  117. Plapp F.W. Jr. (1979) Synergism of pyrethroid insecticides by formamidines against Heliothis pests of cotton, J. Econ. Entomol. 72, 667–670.Google Scholar
  118. PMRA — Canada’s pest management regulatory agency (2009) PMRA approves emergency use of Apivar in Canada, http://cba.stonehavenlife.com/2009/07/ apivar-varroa-emergency-use-in-canada/ (accessed 10 November 2009).Google Scholar
  119. Priestley C.M., Williamson E.M., Wafford K.A., Sattelle D.B. (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA(A) receptors and a homooligomeric GABA receptor from Drosophila melanogaster, British J. Pharmacol. 140, 1363–1372.Google Scholar
  120. Quarles W. (1996) EPA exempts least-toxic pesticides, IPM Practitioner 18, 16–17.Google Scholar
  121. Quarles W. (2008) Pesticides and honey bee colony collapse disorder, IPM Practitioner 30, 1–10.Google Scholar
  122. Rademacher E., Harz M. (2006) Oxalic acid for the control of varroosis in honey bee colonies — a review, Apidologie 37, 98–120.Google Scholar
  123. Ramirez-Romero R., Chaufaux J., Pham-Delegue M.H. (2005) Effects of Cru1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee, Apis mellifera, a comparative approach, Apidologie 36, 601–611.Google Scholar
  124. Rhodes H.A., Wilson W.T., Sonnet P.E., Stoner A. (1979) Exposure of Apis mellifera (Hymenoptera, Apidae) to bee-collected pollen containing residues of microencapsulated methyl parathion, Environ. Entomol. 8, 944–948.Google Scholar
  125. Rinderer T.E., De Guzman L.I., Lancaster V.A., Delatte G.T., Stelzer J.A. (1999) Varroa in the mating yard: I. The effects of Varroa jacobsoni and Apistan (R) on drone honey bees, Am. Bee J. 139, 134–139.Google Scholar
  126. Rissato S.R., Galhiane M.S., de Almeida M.V., Gerenutti M., Apon B.M. (2007) Multiresidue determination of pesticides in honey samples by gas chromatography-mass spectrometry and application in environmental contamination, Food Chem. 101, 1719–1726.Google Scholar
  127. Rissato S.R., Galhiane M.S., Knoll F.R.N., Apon B.M. (2004) Supercritical fluid extraction for pesticide multiresidue analysis in honey: determination by gas chromatography with electron-capture and mass spectrometry detection, J. Chromatogr. A 1048, 153–159.PubMedGoogle Scholar
  128. Robertson J.L., Russell R.M., Preisler H.K., Savin N.E. (2007) Bioassays with Arthropods, CRC Press, Boca Raton.Google Scholar
  129. Rortais A., Arnold G., Halm M.P., Touffet-Briens F. (2005) Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees, Apidologie 36, 71–83.Google Scholar
  130. Russell D., Meyer R., Bukowski J. (1998) Potential impact of microencapsulated pesticides on New Jersey apiaries, Am. Bee J. 138, 207–210.Google Scholar
  131. Sammataro D., Untalan P., Guerrero F., Finley J. (2005) The resistance of Varroa mites (Acari: Varroidae) to acaricides and the presence of esterase, Int. J. Acarol. 31, 67–74.Google Scholar
  132. Schmidt L.S., Schmidt J.O., Rao H., Wang W., Ligen X. (1995) Feeding preferences and survival of young worker honey bees (Hymenoptera:Apidae) fed rape, sesame and sunflower pollen, J. Econ. Entomol. 88, 1591–1595.Google Scholar
  133. Schulz D.J., Robinson G.E. (2001) Octopamine influences division of labor in honey bee colonies, J. Compar. Physiol. A 187, 53–61.Google Scholar
  134. Sherer T.B., Richardson J.R., Testa C.M., Seo B.B., Panov A.V., Yagi T., Matsuno-Magi A., Miller G.W., Greenamyre J.T. (2007) Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease, J. Neurochem. 100, 1469–1479.PubMedGoogle Scholar
  135. Smith R.K., Wilcox M.M. (1990) Chemical residues in bees, honey and beeswax, Am. Bee J. 130, 188–192.Google Scholar
  136. Soberon M., Gill S., Bravo A. (2009) Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cell. Mol. Life Sci. 66, 1337–1349.PubMedGoogle Scholar
  137. Song C., Scharf M.E. (2008) Formic acid: A neurologically active, hydrolyzed metabolite of insecticidal formate esters, Pestic. Biochem. Physiol. 92, 77–82.Google Scholar
  138. Stoner A., Wilson W.T., Harvey J. (1985) Honey bee exposure to beeswax foundation impregnated with fenvalerate or carbaryl, Am. Bee J. 125, 513–516.Google Scholar
  139. Suchail S., Guez D., Belzunces L.P. (2000) Characteristics of imidacloprid toxicity in two Apis mellifera subspecies, Environ. Toxicol. Chem. 19, 1901–1905.Google Scholar
  140. Suchail S., Guez D., Belzunces L.P. (2001) Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera, Environ. Toxicol. Chem. 20, 2482–2486.PubMedGoogle Scholar
  141. Sylvester H.A., Watts R.P., De Guzman L.I., Stelzer J.A., Rinderer T.E. (1999) Varroa in the mating yard: II. The effects of Varroa and fluvalinate on drone mating competitiveness, Am. Bee J. 139, 225–227.Google Scholar
  142. Taséi J.N. (2003) Impact of agrochemicals on non-Apis bees, In Devillers J. and Pham-Delegue M.H., eds., Honey bees: Estimating the environmental impact of chemicals, Taylor and Francis, London, UK, pp. 101–131.Google Scholar
  143. Taylor M.A., Goodwin R.M., McBrydie H.M., Cox H.M. (2007) Destroying managed and feral honey bee (Apis mellifera) colonies to eradicate honey bee pests, N. Z. J. Crop Hort. Sci. 35, 313–323.Google Scholar
  144. Thompson H.M. (2003) Behavioral effects of pesticides in bees: their potential for use in risk assessment, Exotoxicol. 12, 317–330.Google Scholar
  145. Thrasyvoulou A.T., Pappas N. (1988) Contamination of honey and wax with malathion and coumaphos used against the Varroa mite, J. Apic. Res. 27, 55–61.Google Scholar
  146. Trapp S., Pussemier L. (1991) Model calculations and measurements of uptake and translocation of carbamates by bean plants, Chemosphere 22, 327–339.Google Scholar
  147. Tremolada P., Bernardinelli I., Colombo M., Spreafico M., Vighi M. (2004) Coumaphos distribution in the hive ecosystem: Case study for modeling applications, Ecotoxicology 13, 589–601.PubMedGoogle Scholar
  148. Underwood R., Currie R. (2003) The effects of temperature and dose of formic acid on treatment efficacy against Varroa destructor (Acari: Varroidae), a parasite of Apis mellifera (Hymenoptera: Apidae), Exp. Appl. Acarol. 29, 303–313.PubMedGoogle Scholar
  149. USDA-AMS (2009) Pesticide data program, annual summary, calendar year 2008, http://www.ams. usda.gov/pdp (accessed 20 Jan. 2010).Google Scholar
  150. USDA-Biotech Crop Data (2009) Adoption of genetically engineered crops in the U.S. http:// www.ers.usda.gov/Data/BiotechCrops/#2009-7-1 (accessed 20 Aug. 2009).Google Scholar
  151. USDA-PDP (Pesticide Data Program) (2008) Pesticide testing history 1991–2008, http://www.ams.usda.gov/AMSv1.0/pdp (accessed 20 Aug. 2009).Google Scholar
  152. vanEngelsdorp D., Evans J.D., Donovall L., Mullin C., Frazier M., Frazier J., Tarpy D.R., Hayes J., Pettis J.S. (2009a) “Entombed Pollen”: A new condition in honey bee colonies associated with increased risk of colony mortality, J. Invertebr. Pathol. 101, 147–149.PubMedGoogle Scholar
  153. vanEngelsdorp D., Evans J.D., Saegerman C., Mullin C., Haubruge E., Nguyen B.K., Frazier M., Frazier J., Cox-Foster D., Chen Y., Underwood R., Tarpy D.R., Pettis J.S. (2009b) Colony Collapse Disorder: A descriptive study, PLoS ONE 4, 1–17, e6481.Google Scholar
  154. Varrox Vaporizer (2007) The Varrox Vaporizer, HiveLights 20, 16.Google Scholar
  155. Vita Europe Ltd., ApiGuard, http://www.vita-europe. com/ (accessed 15 August 2009).Google Scholar
  156. Wallner K. (1995) The use of varroacides and their influence on the qualify of bee products, Am. Bee J. 135, 817–821.Google Scholar
  157. Wallner K. (1999) Varroacides and their residues in bee products, Apidologie 30, 235–238.Google Scholar
  158. Walorczyk S., Gnusowski B. (2009) Development and validation of a multi-residue method for the determination of pesticides in honeybees using acetonitrile-based extraction and gas chromatography-tandem quadrupole mass spectrometry, J. Chromatogr. A 1216, 6522–6531.PubMedGoogle Scholar
  159. Wang R.W., Liu Z.Q., Dong K., Elzen P.J., Pettis J., Huang Z.Y. (2002) Association of novel mutations in a sodium channel gene with fluvalinate resistance in the mite, Varroa destructor, J. Apic. Res. 41, 17–25.Google Scholar
  160. Wellmark, Hivistan product information, http:// www.centralapiary.com/products.htm#hivastan (accessed August 30, 2009).Google Scholar
  161. Whittington R., Winston M.L., Melathopoulos A.P., Higo H.A. (2000) Evaluation of the botanical oils neem, thymol, and canola sprayed to control Varroa jacobsoni Oud. (Acari: Varroidae) and Acarapsis woodi (Acari: Tarsonemidae) in colonies of honey bees (Apis mellifera L., Hymenoptera: Apidae), Am. Bee J. 140, 565–572.Google Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Reed M. Johnson
    • 1
  • Marion D. Ellis
    • 1
  • Christopher A. Mullin
    • 2
  • Maryann Frazier
    • 2
  1. 1.Department of EntomologyUniversity of NebraskaLincolnUSA
  2. 2.Department of EntomologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations