Apidologie

, Volume 41, Issue 3, pp 227–242 | Cite as

Research strategies to improve honeybee health in Europe

  • Robin F. A. Moritz
  • Joachim de Miranda
  • Ingemar Fries
  • Yves Le Conte
  • Peter Neumann
  • Robert J. Paxton
Review Article

Abstract

Understanding the fundaments of colony losses and improving the status of colony health will require cross-cutting research initiatives including honeybee pathology, chemistry, genetics and apicultural extension. The 7th framework of the European Union requested research to empirically and experimentally fill knowledge gaps on honeybee pests and diseases, including ’Colony Collapse Disorder’ and the impact of parasites, pathogens and pesticides on honeybee mortality. The interactions among these drivers of colony loss will be studied in different European regions, using experimental model systems including selected parasites (e.g. Nosema and Varroa mites), viruses (Deformed Wing Virus, Black Queen Cell Virus, Israeli Acute Paralysis Virus) and model pesticides (thiacloprid, τ-fluvalinate). Transcriptome analyses will be used to explore host-pathogen-pesticide interactions and identify novel genes for disease resistance. Special attention will be given to sublethal and chronic exposure to pesticides and will screen how apicultural practices affect colony health. Novel diagnostic screening methods and sustainable concepts for disease prevention will be developed resulting in new treatments and selection tools for resistant stock. Research initiatives will be linked to various national and international ongoing European, North- and South-American colony health monitoring and research programs, to ensure a global transfer of results to apicultural practice in the world community of beekeepers.

Apis mellifera pathology diagnosis disease resistance 

Stratégies de recherche pour améliorer la santé des abeilles en Europe

Apis mellifera pathologie diagnostic résistance aux maladies 

Forschungsstrategien zur Verbesserung der Bienengesundheit in Europa

Zusammenfassung

Die letzten Jahrzehnte waren durch einen konstanten Rückgang von Bienenvölkern in den Mitgliedstaaten der EU gekennzeichnet (cf. Abb. 1). Insbesondere dramatische und unkontrollierbare Völkerverluste entwickelten sich zu einer akuten Insolvenz — Bedrohung für Imkereibetriebe. Nach wie vor sind die Ursachen dieser großen, flächendeckenden Völkerverluste auf nationaler Ebene unklar und daher sind zielgerichtete kausale Therapien nicht möglich. Oft wurden daher unnötige, prophylaktisch medikamentöse Behandlungen durchgeführt, um regionale Völkerbestände zu sichern. Dies hat bislang jedoch noch nicht zu einer nachhaltigen Bekämpfung von Bienenkrankheiten geführt, allerdings regelmäßig zur Kontamination des Honigs.

Die Forschungspolitik der EU zielt daher darauf ab, die Honigbelastung zu reduzieren, die Rassevielfalt europäischer Honigbienen zu erhalten, Völkerverluste zu vermeiden und die Bedeutung der Interaktionen zwischen Parasiten, Pathogenen und Pestiziden für die Koloniegesundheit zu verstehen. Gerade die Kombination verschiedener Faktoren wird als ein besonderes Problem gesehen. Eine einzelnes Pathogen mag für die Kolonie harmlos sein, aber in Kombination mit anderen zum Zusammenbruch des Volkes führen.

Das Forschungsnetzwerk BEE DOC (Bees in EuropE and the Decline Of Honeybee Colonies) wird sich deshalb mit den Interaktionen zwischen Parasiten, Pathogenen und Pestiziden beschäftigen. In Anbetracht der großen Zahl von Pathogenen und Pestiziden ist es allerdings nicht realisierbar, alle möglichen Interaktionen experimentell zu testen. Es ist daher notwendig, sich in Experimenten auf wenige ausgewählte Modellsysteme von besonderer Bedeutung zu beschränken. Im BEE DOC Netzwerk sind dies V. destructor, Nosema spp., häufige assoziierte Viren, und die häufig genutzten Pestizide Thiacloprid und τ-Fluvalinat. Die Forschungsaktivitäten müssen auch die Untersuchung der genetischen und genomischen Kontrolle von Krankheitsresistenz beinhalten. Oligonukleotid DNA-Chips die das gesamte Genom der Honigbiene abdecken sind dabei von besonderem Nutzen. Zusätzlich sollen neue Resistenzgene mit Hilfe von haploiden Drohnen gefunden werden. Antibiotische Substanzen, die entweder von den Bienen selbst erzeugt oder von Pflanzen gesammelt werden sollen auf ihre Wirksamkeit bei der Bekämpfung von Bienenkrankheiten untersucht werden. Gerade sekundäre Metabolite von Pflanzensubstanzen, die von der Honigbeine enzymatisch verändert wurden um eine höhere Wirksamkeit zu erhalten, sind von besonderem Interesse. Neue diagnostische Verfahren, die in der Forschung, im Routine — screening und auf dem Bienenstand eingesetzt werden können müssen entwickelt werden, um rechtzeitig Erkrankungen bei den Bienenvölkern diagnostizieren zu können bevor diese zusammenbrechen.

Der Erfolg dieser Forschungsarbeiten wird stark von Koordinierung des Monitoring und der Forschung sowie von der Implementierung der Ergebnisse in die imkerliche Praxis abhängig sein. Das COLOSS Netzwerk (Cost Action) ist hierfür in den nächsten Jahren ein hervorragendes Werkzeug. In ihm sind über 150 Mitglieder aus 39 Ländern vertreten, die die nationalen Forschungsprojekte zur Bienengesundheit koordinieren und aufeinander abstimmen. Nur wenn es gelingt, die Forschungsergebnisse in der Imkerei umzusetzen, werden wir Fortschritte bei der nachhaltigen Prävention von Völkerverlusten auf einer europa- und weltweiten Ebene erzielen können.

Apis mellifera Pathologie Diagnose Krankheitsresistenz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abhyankar A.V., Dash P.K., Saxena P., Bhargava R., Parida M.M., Jana A.M., Sahni A.K., Rao P.V.L. (2006) Comparison of a dipstick dot-ELISA with commercial assays for anti-dengue virus IgM antibodies, Viral Immunol. 19, 630–636.PubMedGoogle Scholar
  2. Alaux C., Le Conte Y., Adams, H.A., Rodriguez-Zas S., Grozinger C.M., Sinha S., Robinson G.E. (2009) Regulation of brain gene expression in honey bees by brood pheromone, Gene Brain Behav. 8, 309–319.Google Scholar
  3. Allen M.F., Ball B.V. (1996) The incidence and world distribution of honey bee viruses, Bee World 77, 141–162.Google Scholar
  4. Anderson D., East I.J. (2008) The latest buzz about colony collapse disorder, Science 319, 724–725.PubMedGoogle Scholar
  5. Bailey L., Ball B.V. (1991) Honey bee pathology, 2nd ed., Academic Press, London.Google Scholar
  6. Bailey L., Ball B.V., Perry J.N. (1981) The prevalence of viruses in Britain, Ann. Appl. Biol. 97, 109–118.Google Scholar
  7. Bailey L., Ball B.V., Perry J.N. (1983) Association of viruses with 2 protozoal pathogens of the honeybee, Ann. Appl. Biol. 103, 13–20.Google Scholar
  8. Ball B.V., Allen M.F. (1988) The prevalence of pathogens in honey bee (Apis mellifera) colonies infested with the parasitic mite Varroa jacobsoni, Ann. Appl. Biol. 113, 237–244.Google Scholar
  9. Bankova V. (2005) Recent trends and important developments in propolis research, Evidence Based Complement Alternat. Med. 2, 29–32.Google Scholar
  10. Bankova V., Christov R., Kujumgiev A., Marcucci M.C., Popova S. (1995) Chemical Composition and antibacterial activity of Brazilian propolis, Z. Naturforsch. c 50, 167–172.Google Scholar
  11. Barnett E.A., Charlton A.J., Fletcher M.R. (2007) Incidents of bee poisoning with pesticides in the United Kingdom, 1994–2003, Pest Manag. Sci. 63, 1051–1057.PubMedGoogle Scholar
  12. Benjamin A., McCallum B. (2008) A world without bees, Guardian books.Google Scholar
  13. Berényi O., Bakonyi T., Derakhshifar I., Koglberger H., Nowotny N. (2006) Occurrence of six honeybee viruses in diseased Austrian apiaries, Appl. Environ. Microb. 72, 2414–2420.Google Scholar
  14. Bogdanov S. (2006) Contaminants of bee products, Apidologie 37, 1–18.Google Scholar
  15. Bogdanov S., Imdorf A., Kilchenmann V. (1998) Acaricide residues in some bee products, J. Apic. Res. 37, 57–67.Google Scholar
  16. Bowen-Walker P.L., Martin S.J., Gunn A. (1999) The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud., J. Invertebr. Pathol. 73, 101–106.PubMedGoogle Scholar
  17. Büchler R., Berg S., Le Conte Y. (2010) Breeding for mite resistance in Europe, Apidologie 41, 393–408.Google Scholar
  18. Chauzat M.P., Faucon J.P. (2007) Pesticide residues in beeswax samples collected from honey bee colonies (Apis mellifera L.) in France, Pest Manag. Sci. 63, 1100–1106.PubMedGoogle Scholar
  19. Chauzat M.P., Faucon J.P., Martel A.C., Lachaize J., Cougoule N., Aubert M. (2006) A survey of pesticide residues in pollen loads collected by honey bees in France, J. Econ. Entomol. 99, 253–262.PubMedGoogle Scholar
  20. Chen Y., Evans J.D. (2007) Historical presence of Israeli Acute Paralysis Virus in the United States, Am. Bee J. 147, 1027–1028.Google Scholar
  21. Chen Y.P., Huang Z.Y. (2010) Nosema ceranae, a newly identified pathogen of Apis mellifera in the U.S.A. and Asia, Apidologie 41, 364–374.Google Scholar
  22. Chen Y., Evans J.D., Feldlaufer M. (2005) Detection of multiple viruses in queens of the honey bee Apis mellifera L., J. Invertebr. Pathol. 90, 118–121.PubMedGoogle Scholar
  23. Chen Y., Evans J.D., Feldlaufer M. (2006) Horizontal and vertical transmission of viruses in the honeybee, Apis mellifera, J. Invertebr. Pathol. 92, 152–159.PubMedGoogle Scholar
  24. Chen Y., Evans J.D., Smith I.B., Pettis J.S. (2008) Nosema ceranae is a long-present and widespread microsporidian infection of the European honey bee (Apis mellifera) in the United States, J. Invertebr. Pathol. 97, 186–188.PubMedGoogle Scholar
  25. Claudianos C., Ranson H., Johnson R.M., Biswas S., Schuler M.A., Berenbaum M.R., Feyereisen R., Oakeshott J.G. (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee, Insect Mol. Biol. 15, 615–636.PubMedGoogle Scholar
  26. Coenye T., Vandamme P. (2003) Extracting phylogenetic information from whole-genome sequencing projects: the lactic acid bacteria as a test case, Microbiol SGM 149, 3507–3517.Google Scholar
  27. Cox-Foster D.L., Conlan S., Holmes E.C. et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder, Science 318, 283–287.PubMedGoogle Scholar
  28. Dainat B., Ken T., Berthoud H., Neumann P. (2009) The ectoparasitic mite Tropilaelaps mercedesae (Acari, Laelapidae) as a vector of honeybee viruses, Insectes Soc. 56, 40–43.Google Scholar
  29. de Jong D., Morse R.A., Eickwort G.C. (1982) Mite pests of honeybees, Annu. Rev. Entomol. 27, 229–252.Google Scholar
  30. de Miranda J.R., Cordoni G., Budge G. (2010) The acute bee paralysis virus — Kashmir bee virus — Israeli paralysis virus complex, J. Invertebr. Pathol. 103, S30-S47.PubMedGoogle Scholar
  31. de Miranda J.R., Genersch E. (2010) Deformed wing virus, J. Invertebr. Pathol. 103, S48-S61.PubMedGoogle Scholar
  32. Delaplane K.S., Mayer D.F. (2000) Crop pollination by bees, CAB, New York.Google Scholar
  33. Dieckmann U., Metz J.A.J., Sabelis M.W., Sigmund K. (2000) Adaptive dynamics of infectious diseases: in pursuit of virulence management, Cambridge University Press, Cambridge.Google Scholar
  34. Ellis J.D., Munn P.A. (2005) The worldwide health status of honey bees, Bee World 86, 88–101.Google Scholar
  35. Elzen P.J. (1998) Fluvalinate resistance in Varroa jacobsoni from several geographic locations, Am. Bee J. 138, 674 1998.Google Scholar
  36. Evans J.D. (2007) Bee Path: An Ordered Quantitative-PCR Array for Honey Bee Immunity and Disease, J. Invertebr. Pathol. 93, 135–139.Google Scholar
  37. Evans J.D., Spivak M. (2010) Socialized medicine: Individual and communal disease barriers in honey bees, J. Invertebr. Pathol. 103, S62-S72.PubMedGoogle Scholar
  38. Evans J.D., Aronstein K., Chen Y., Hetru C., Imler J.-L., Jiang H., Kanost M., Thompson G.J., Zou Z., Hultmark D. (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera, Insect Mol. Biol. 15, 645–656.PubMedGoogle Scholar
  39. Eyer M., Chen Y.P., Schäfer M.O., Pettis J.S., Neumann P. (2009) Small hive beetle, Aethina tumida, as a potential biological vector of honeybee viruses, Apidologie 40, 419–428.Google Scholar
  40. Faucon J.P., Mathieu L., Ribiere M., Martel A.C., Drajnudel P., Zeggane S., Aurieres C., Aubert M.F.A. (2002) Honey bee winter mortality in France in 1999 and 2000, Bee World 83, 14–23.Google Scholar
  41. Flemming G. (1871) Animal plagues, Their history, nature and prevention, Chapman & Hall.Google Scholar
  42. FAO (2009) FAOSTAT/Production/Live Animals, http://faostat.fao.org.Google Scholar
  43. Forsgren E., Fries I. (2010) Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees, Vet. Parasitol., in press.Google Scholar
  44. Forsgren E., de Miranda J.R., Isaksson M., Wei S., Fries I. (2009) Deformed wing virus associated with Tropilaelaps mercedesae infesting European honey bees (Apis mellifera), Exp. Appl. Acarol. 47, 87–97.PubMedGoogle Scholar
  45. Forsgren E., Olofsson T., Vásquez A. (2009) Novel Lactic Acid Bacteria inhibiting Paenibacillus larvae in honey bee larvae, Apidologie 41, 99–108.Google Scholar
  46. Fries I. (1988) Infectivity and multiplication of Nosema apis Z. in the ventriculus of the honeybee, Apidologie 19, 319–328.Google Scholar
  47. Fries I. (1993) Nosema apis — a parasite in the honeybee colony, Bee World 74, 5–19.Google Scholar
  48. Fries I. (2010) Nosema ceranae in European honey bees (Apis mellifera), J. Invertebr. Pathol. 103, S73-S79.PubMedGoogle Scholar
  49. Fries I., Bommarco R. (2007) Possible host-parasite adaptations in honey bees infested by Varroa destructor mites, Apidologie 38, 525–533.Google Scholar
  50. Fries I., Feng F., daSilva A., Slemenda S.B., Pieniazek N.J. (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae), Eur. J. Protistol. 32, 356–365.Google Scholar
  51. Fries I., Imdorf A., Rosenkranz P. (2006a) Survival of mite infested (Varroa destructor) honey bee (Apis mellifera) colonies in a Nordic climate, Apidologie 37, 564–570.Google Scholar
  52. Fries I., Martin R., Meana A., Garcia-Palencia P., Higes M. (2006b) Natural infections of Nosema ceranae in European honey bees, J. Apic. Res. 45, 230–233.Google Scholar
  53. Gallai N., Salles J.-M., Settele J., Vaissière B.E. (2008) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline, Ecol. Econom. 68, 810–821.Google Scholar
  54. Gauthier L., Tentcheva D., Tournaire M., Dainat B., Cousserans F., Colin M.E., Bergoin M. (2007) Viral load estimation in asymptomatic honey bee colonies using the quantitative RT-PCR technique, Apidologie 38, 426–435.Google Scholar
  55. Genersch E., Ashiralieva A., Fries I. (2005) Strain- and genotype-specific differences in virulence of Paenibacillus larvae subsp. larvae, a honeybee bacterial pathogen causing American foulbrood disease, Appl. Environ. Microbiol. 71, 7551–7555.PubMedGoogle Scholar
  56. Genersch E., von der Ohe W., Kaatz H., Schroeder A., Otten C., Büchler R., Berg S., Ritter W., Mülhen W., Gisder S., Meixner M., Liebig G., Rosenkranz P. (2010) The German Bee Monitoring Project: a long term study to understand periodically high winter losses of honey bee colonies, Apidologie 41, 332–352.Google Scholar
  57. Gil M.I., Tomas-Barberan F.A., Hess-Pierce B., Holcroft D.M., Kader A.A. (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing, J. Agric. Food Chem. 48, 4581–4589.PubMedGoogle Scholar
  58. Gisder S., Aumeier P., Genersch E. 2009. Deformed wing virus (DWV): viral load and replication in mites (Varroa destructor), J. Gen. Virol. 90, 463–467.PubMedGoogle Scholar
  59. Grozinger C.M., Sharabash N.M., Whitfield C.W., Robinson G.E. (2003) Pheromone-mediated gene expression in the honey bee brain, Proc. Natl. Acad. Sci. USA 100, 14519–14525.PubMedGoogle Scholar
  60. Higes M., Martin-Hernandez R., Botias C., Garrido Bailon E., Gonzalez-Porto A.V., Barrios L., del Nozal M.J., Bernal J.L., Jimenez J.J., Palencia P.G., Meana A. (2008) How natural infection by Nosema ceranae causes honeybee colony collapse, Environ. Microbiol. 10, 2659–2669.PubMedGoogle Scholar
  61. Higes M., Martin-Hernandez R., Garrido-Bailon E., Botias C., Meana A. (2009), The presence of Nosema ceranae (Microsporidia) in North African honey bees (Apis mellifera intermissa), J. Apic. Res. 48, 217–219.Google Scholar
  62. Hung A.C.F., Adams J.R., Shimanuki H. (1995) Bee parastic mite syndrome. 2. the role of Varroa mite and viruses, Am. Bee J. 135, 702–704.Google Scholar
  63. Invernizzi C., Abud C., Tomasco I.H., Harriet J., Ramallo G., Campa J., Katz H., Gardiol G., Mendoza Y. (2009) Presence of Nosema ceranae in honeybees (Apis mellifera) in Uruguay, J. Invertebr. Pathol. 101, 150–153.PubMedGoogle Scholar
  64. Jaffé R., Dietemann V., Allsopp M.H., Costa C., Crewe R.M., Dall’ Olio R., De La Rua P., El-Niweiri M.A.A., Fries I., Kezic N., Meusel M.S., Paxton R.J., Shaibi T., Stolle E., Moritz R.F.A. (2009) Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses, Conserv. Biol., DOI: 10.1111/j.1523-1739.2009.01331.x.Google Scholar
  65. Johnson R.M., Evans J.D., Robinson G.E., Berenbaum M.R. (2009) Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera), Proc. Natl. Acad. Sci. USA 106, 14790–14795.PubMedGoogle Scholar
  66. Klee J., Besana A.M., Genersch E., Gisder S., Nanetti A., Tam D.Q., Chinh T.X., Puerta F., Ruz J.M., Kryger P., Message D., Hatjina F., Korpela S., Fries I., Paxton R.J. (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera, J. Invertebr. Pathol. 96, 1–10.PubMedGoogle Scholar
  67. Kocher S.D., Richard F.-J., Tarpy D.R., Crozinger C.M. (2008) Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera), BMC Genomics 9, e232.Google Scholar
  68. Kraus B., Page R.E. (1995) Effect of Varroa jacobsoni (Mesostigmata: Varroidae) on feral Apis mellifera (Hymenoptera: Apidae) in California, Environ. Entomol. 24, 1473–1480.Google Scholar
  69. Kurtz J., Franz K. (2003) Evidence for memory in invertebrate immunity, Nature 425, 37–38.PubMedGoogle Scholar
  70. Lattorff H.M.G., Moritz R.F.A., Crewe R.M., Solignac M. (2007) Control of reproductive dominance by the thelytoky gene in honeybees, Biol. Lett. 3, 292–295.PubMedGoogle Scholar
  71. Le Conte Y., De Vaublanc G., Crauser D., Jeanne F., Rousselle J.-C., Becard J.-M. (2007) Honey bee colonies that have survived Varroa destructor, Apidologie 38, 566–572.Google Scholar
  72. Le Conte Y., Ellis M.D., Ritter W. (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41, 353–363.Google Scholar
  73. Lodesani M. (1995) Ineffectiveness of Apistan® treatment against the mite Varroa jacobsoni Oud in several districts of Lombardy (Italy), Apidologie 26, 67–72.Google Scholar
  74. Martín-Hernández R., Higes M., Perez J.L., Nozal M.J., Gomez L., Meana A. (2007) Outcome of colonization of Apis mellifera by Nosema ceranae, Appl. Environ. Microbiol. 73, 6331–6338.PubMedGoogle Scholar
  75. Matheson A. (1995) World bee health update, Bee World 76, 31–39.Google Scholar
  76. Milani N. (1995) The resistance of Varroa jacobsoni Oud. To Pyrethriods — A laboratory assay, Apidologie 26, 415–429.Google Scholar
  77. Milani N. (1999) The resistance of Varroa jacobsoni Oud. to acaricides, Apidologie 30, 229–234.Google Scholar
  78. Moritz R.F.A., Evans J.D. (2007) Honeybee breeding and genomics for resistance to virus infections, in: Aubert M., Ball B., Fries I., Moritz R.F.A., Milani N., Bernadellie I. (Eds.), Virology and the Honey Bee, European Commission, Brussels, pp. 347–370.Google Scholar
  79. Moritz R.F.A., Kraus B.F., Kryger P., Crewe R.M. (2007) The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees, Insect Conserv. 11, 391–397.Google Scholar
  80. Navajas M., Migeon A., Alaux C., Martin-Magniette M.L., Robinson G.E., Evans J.D., Cros-Arteil S., Crauser D., Le Conte Y. (2008) Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection, BMC Genomics 9, 301.PubMedGoogle Scholar
  81. Nordström S. Fries I., Aarhus A., Hansen H., Korpela S. (1999) Virus infections in Nordic honey bee colonies with no, low or severe Varroa jacobsoni infestations, Apidologie 30, 475–484.Google Scholar
  82. Oldroyd B.P. (2007) What’s killing American honey Bees? PLoS Biol 5, e168.PubMedGoogle Scholar
  83. Olofsson T.C., Vasquez A. (2008) Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera, Curr. Microbiol. 57, 356–363.PubMedGoogle Scholar
  84. Ongus J.R., Peters D., Bonmatin J.M., Bengsch E., Vlak J.M., van Oers M.M. (2004) Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor, J. Gen. Virol. 85, 3747–3755.PubMedGoogle Scholar
  85. Ouwehand A.C., Salminen S., Isolauri E. (2002) Probiotics: an overview of beneficial effects, Antonie van Leeuwenhoek 82, 279–289.PubMedGoogle Scholar
  86. Paxton R.J., Klee J., Korpela S., Fries I., (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis, Apidologie 38, 558–565.Google Scholar
  87. Popova M., Bankova V., Butovska D., Petkov V., Nikolova-Damyanova B., Sabatini A.G., Marcazzan G.L., Bogdanov S. (2004) Validated methods for the quantification of biologically active constituents of poplar-type propolis, Phytochem. Anal. 15, 235–240.PubMedGoogle Scholar
  88. Popova M.P., Bankova V.S., Bogdanov S., Tsvetkova I., Naydenski C., Marcazzan G.L., Sabatini A.G. (2007) Chemical characteristics of poplar type propolis of different geographic origin, Apidologie 38, 306–311.Google Scholar
  89. Potts S.G., Roberts S.P.M., Dean R., Marris G., Brown M., Jones R., Neumann P., Settele J. (2010) Declines of managed honeybees and beekeepers in Europe, J. Apic. Res. 49, 15–22.Google Scholar
  90. Pugia M.J., Sommer R.G., Kuo H.H., Corey P.F., Gopual D.L., Lott J.A. (2004) Near-patient testing for infection using urinalysis and immunochromatography strips, Clin. Chem. Lab. Med. 42, 340–346.PubMedGoogle Scholar
  91. Rennie J., White P.B., Harvey E.J. (1921) Isle of Wight disease in hive bees, Trans. R. Soc. Edinburgh 52, 737–779.Google Scholar
  92. Ribière M., Ball B., Aubert M.F.A. (2008) Natural history and geographical distribution of honeybee viruses, in: Aubert M., Ball B., Fries I., Moritz R.F.A., Milani N., Bernadellie I. (Eds.), Virology and the Honey Bee, European Commission, Brussels, pp. 15–84.Google Scholar
  93. Sammataro D., Gerson U., Needham G. (2000) Parasitic mites of honey bees: Life history, implications, and impact, Annu. Rev. Entomol. 45, 519–548.PubMedGoogle Scholar
  94. Siede R., Berg S., Meixner M. (2008) Effects of symptomless infections with Nosema sp. on honey bee colonies. In: OIE-Symposium Diagnosis and control of bee diseases, Freiburg, Germany, August 26–28.Google Scholar
  95. Simone M., Spivak M. (2010) Propolis and bee health: the natural history and significance of resin use by honey, Apidologie 41, 295–311.Google Scholar
  96. Simone M., Evans J., Spivak M. (2009) Resin collection and social immunity, Evolution, 63, 3016–3022.PubMedGoogle Scholar
  97. Spivak M. (2001) Mechanisms of American Foulbrood resistance and current research on hygienic behavior, in: Moritz R.F.A. (Ed.), Molecular Mechanisms of Disease Tolerance in Honeybees, BRI Dol, Dol, pp. 155–174.Google Scholar
  98. Stanimirovic Z., Stevanovic J., Jovanovic S., Andjelkovic M. (2005) Evaluation of genotoxic effects of Apitol (R) (cymiazole hydrochloride) in vitro by measurement of sister chromatid exchange, Mutation Res. 588, 152–157.PubMedGoogle Scholar
  99. Stefanidou M., Athanaselis S., Koutselinis A. (2003) The toxicology of honey bee poisoning, Vet. Human Toxicol. 45, 103–105.Google Scholar
  100. Stokstad E. (2007) The case of the empty hives, Science 316, 970–972.PubMedGoogle Scholar
  101. Sumpter D.J.T., Martin S.J. (2004) The dynamics of virus epidemics in Varroa-infested honey bee colonies, J. Anim. Ecol. 73, 51–63.Google Scholar
  102. Tentcheva D., Gauthier L., Zappulla N., Dainat B., Cousserans F., Colin M.E., Bergoin M. (2004) Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France, Appl. Environ. Mircobiol. 70, 7185–7191.Google Scholar
  103. Tentcheva D., Gauthier L., Bagny L., Fievet J., Dainat B., Cousserans F., Colin M.E., Bergoin M. (2006) Comparative analysis of deformed wing virus (DWV) RNA in Apis mellifera and Varroa destructor, Apidologie 37, 41–50.Google Scholar
  104. Thompson H.M. (2003) Behavioural effects of pesticides in bees — Their potential for use in risk assessment, Ecotoxicol. 12, 317–330.Google Scholar
  105. Thompson H.M., Brown M.A., Ball R.F., Bew M.H. (2002) First report of Varroa destructor resistance to pyrethroids in the UK, Apidologie 33, 357–366.Google Scholar
  106. Todd J.H., De Miranda J.R., Ball B.V. (2007) Incidence and molecular characterization of viruses found in dying New Zealand honey bee (Apis mellifera) colonies infested with Varroa destructor, Apidologie 38, 345–367.Google Scholar
  107. Tomás-Barberán F.A., Wollenweber E., (1990) Flavonoid aglycones from the leaf surfaces of some Labiatae species, Plant Syst. Evol. 173, 109–118.Google Scholar
  108. Tomás-Barberan F.A., Trowitzsch-Kienast W., Wray V. (1989) Antifungal phloroglucinol derivatives and lypophylic flavonoids from Helichrysum decumbens, Phytochemistry 28, 1613–1615.Google Scholar
  109. Tremolada P., Bernardinelli I., Colombo M., Spreafico M., Vighi M. (2004) Coumaphos distribution in the hive ecosystem: Case study for modeling applications, Ecotoxicology 13, 589–601.PubMedGoogle Scholar
  110. Underwood R., van Engelsdorp D. (2007) Colony Collapse Disorder: Have we seen this before? Bee Cult. 35, 13–18.Google Scholar
  111. van Engelsdorp D., Meixner M.D. (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them, J. Invertebr. Pathol. 103, S80-S95.Google Scholar
  112. van Engelsdorp D., Underwood R., Caron D., Hayes J. (2007) An estimate of managed colony losses in the winter of 2006–2007: A report commissioned by the Apiary Inspectors of America, Am. Bee J. 147, 599–603.Google Scholar
  113. Wallner K. (1999) Varroacides and their residues in bee products, Apidologie 30, 235–248.Google Scholar
  114. Weick J., Thorn R.S. (2002) Effects of acute sublethal exposure to coumaphos or diazinon on acquisition and discrimination of odor stimuli in the honey bee (Hymenoptera: Apidae), J. Econ. Entomol. 95, 227–236.PubMedGoogle Scholar
  115. Weinstock G.M., Robinson G.E., Gibbs R.A. et al. (2006) Insights into social insects from the genome of the honeybee Apis mellifera, Nature 443, 931–949.Google Scholar
  116. Whitfield C.W., Ben-Shahar Y., Brillet C., Leoncini I., Crauser D., Le Conte Y., Rodriguez-Zas S., Robinson G.E. (2006) Genomic dissection of behavioral maturation in the honey bee, Proc. Natl. Acad. Sci. USA 103, 16068–16075.PubMedGoogle Scholar
  117. Wilson W.T., Menapace D.M. (1979) Disappearing disease of honeybees: A survey of the United States, Am. Bee J. 119, 118–119; 184–186; 217.Google Scholar
  118. Yoshiyama, M., Kimura, K. (2009) Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood, J. Invertebr. Pathol. 102, 91–96.PubMedGoogle Scholar
  119. Yu S.J., Robinson F.A., Nation J.L. (1984) Detoxication capacity in the honey bee, Apis mellifera L., Pestic. Biochem. Physiol. 22, 360–368.Google Scholar
  120. Yue C., Genersch E. (2005) RT-PCR analysis of Deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor), J. Gen. Virol. 86, 3419–3424.PubMedGoogle Scholar

Copyright information

© Springer S+B Media B.V. 2010

Authors and Affiliations

  • Robin F. A. Moritz
    • 1
  • Joachim de Miranda
    • 2
  • Ingemar Fries
    • 2
  • Yves Le Conte
    • 3
  • Peter Neumann
    • 4
  • Robert J. Paxton
    • 5
  1. 1.Institut für BiologieMartin-Luther Universität Halle-WittenbergHalle a.d. SalleGermany
  2. 2.Department of EcologySveriges Lantsbruks Universitet UppsalaSweden
  3. 3.Institut National de la Recherche AgronomiqueUAPV Abeilles et EnvironnementAvignonFrance
  4. 4.Swiss Bee Research CentreAgroscope Liebefeld-PosieuxSwitzerland
  5. 5.School of Biological SciencesQueens UniversityBelfastUK

Personalised recommendations